Answer
Verified
498.6k+ views
Hint: Find the relative velocity between the two trains. The total distance covered is the sum of lengths of both the trains. Then use formula for velocity to determine the sum of lengths of the trains. Since, the length of one train is known, the other can be found easily.
Complete step-by-step answer:
The two trains are running in opposite directions, the relative speed of one with respect to another is then the sum of their speeds.
Let v be the relative speed between the two trains, then v is given by:
\[v = 36 + 45\]
\[v = 81kmph\]
We know that \[1kmph = \dfrac{5}{{18}}m/s\] , converting v to m/s, we have:
\[v = 81 \times \dfrac{5}{{18}}m/s\]
\[v = \dfrac{{45}}{2}m/s{\text{ }}.........{\text{(1)}}\]
The total distance for the trains to completely cross each other is the sum of the lengths of the two trains. Let the total distance be d and the length of one train be \[{L_1}\] and the length of the other train be \[{L_2}\] . Then we have:
\[d = {L_1} + {L_2}{\text{ }}.........{\text{(2)}}\]
We know the formula for the total distance covered, when total time and the speed is given. It is given by:
\[d = v \times t\]
The time taken to cross each other is 20 seconds. Substituting equation (1), we have,
\[d = \dfrac{{45}}{2} \times 20\]
\[d = 45 \times 10\]
\[d = 450m{\text{ }}.........{\text{(3)}}\]
Using equation (3) in equation (2), we have:
\[{L_1} + {L_2} = 450\]
It is given that the length of one train is 200m, hence \[{L_1} = 200m\] . Substituting this in the above equation, we get
\[200 + {L_2} = 450\]
\[{L_2} = 450 - 200\]
\[{L_2} = 250m\]
Hence, the length of the other train is 250 m.
Therefore, the correct answer is option (d).
Note: The possibility of the mistake is that you can take the relative speed to be the difference between the two trains, which is wrong. When the trains are moving in opposite directions, the relative speed is the sum of both the speeds. You can also make an error by taking the total distance as the difference between the lengths of the trains but for the trains to cross them completely, we need to take the sum of the lengths of the trains.
Complete step-by-step answer:
The two trains are running in opposite directions, the relative speed of one with respect to another is then the sum of their speeds.
Let v be the relative speed between the two trains, then v is given by:
\[v = 36 + 45\]
\[v = 81kmph\]
We know that \[1kmph = \dfrac{5}{{18}}m/s\] , converting v to m/s, we have:
\[v = 81 \times \dfrac{5}{{18}}m/s\]
\[v = \dfrac{{45}}{2}m/s{\text{ }}.........{\text{(1)}}\]
The total distance for the trains to completely cross each other is the sum of the lengths of the two trains. Let the total distance be d and the length of one train be \[{L_1}\] and the length of the other train be \[{L_2}\] . Then we have:
\[d = {L_1} + {L_2}{\text{ }}.........{\text{(2)}}\]
We know the formula for the total distance covered, when total time and the speed is given. It is given by:
\[d = v \times t\]
The time taken to cross each other is 20 seconds. Substituting equation (1), we have,
\[d = \dfrac{{45}}{2} \times 20\]
\[d = 45 \times 10\]
\[d = 450m{\text{ }}.........{\text{(3)}}\]
Using equation (3) in equation (2), we have:
\[{L_1} + {L_2} = 450\]
It is given that the length of one train is 200m, hence \[{L_1} = 200m\] . Substituting this in the above equation, we get
\[200 + {L_2} = 450\]
\[{L_2} = 450 - 200\]
\[{L_2} = 250m\]
Hence, the length of the other train is 250 m.
Therefore, the correct answer is option (d).
Note: The possibility of the mistake is that you can take the relative speed to be the difference between the two trains, which is wrong. When the trains are moving in opposite directions, the relative speed is the sum of both the speeds. You can also make an error by taking the total distance as the difference between the lengths of the trains but for the trains to cross them completely, we need to take the sum of the lengths of the trains.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE