Answer
Verified
371.7k+ views
Hint: Here we are asked to find the angle between two vectors whose magnitudes are given. We are also provided with the magnitude of the resultant vector of those two vectors. So, we will use the formula of the magnitude of the resultant vector since it involves the angle between them. For us, the required value is the angle between the vectors so we use this formula to find it.
Formula: Formula that we need to know before solving this problem:
let \[\overrightarrow a \] and \[\overrightarrow b \] be two vectors then the magnitude of the resultant of these two vectors is \[\overrightarrow {\left| R \right|} = \sqrt {{a^2} + {b^2} + 2ab\cos \theta } \] where \[\theta \] the angle between the vectors \[\overrightarrow a \] and \[\overrightarrow b \].
Complete step-by-step solution:
It is given that the two vectors have magnitude \[3\] unit and \[4\] unit respectively and the magnitude of its resultant is \[5\] units. We aim to find the angle between the vectors.
Since we are given the magnitude of the resultant vector, we will use the formula to find the angle between the two vectors.
We know that the magnitude of the resultant vector of two vectors \[\overrightarrow a \] and \[\overrightarrow b \] \[\overrightarrow {\left| R \right|} = \sqrt {{a^2} + {b^2} + 2ab\cos \theta } \] where \[\theta \] the angle between the vectors \[\overrightarrow a \] and \[\overrightarrow b \].
We have that \[\left| {\overrightarrow a } \right| = a = 3\], \[\left| {\overrightarrow b } \right| = b = 4\] and \[\left| {\overrightarrow R } \right| = 5\] substituting these in the formula we get
\[5 = \sqrt {{3^2} + {4^2} + 2\left( 3 \right)\left( 4 \right)\cos \theta } \] where \[\theta \] the angle between the vectors \[\overrightarrow a \] and \[\overrightarrow b \].
On simplifying the above, we get
\[5 = \sqrt {9 + 16 + 24\cos \theta } \]
On simplifying further, we get
\[5 = \sqrt {25 + 24\cos \theta } \]
Now let us square the above expression on both sides
\[{5^2} = 25 + 24\cos \theta \]
\[25 = 25 + 24\cos \theta \]
\[0 = 24\cos \theta \]
\[\cos \theta = 0\]
We know that the value \[\cos \theta \]equals zero when the angle is \[90^\circ \]
Thus, \[\theta = 90^\circ \]
Therefore, the angle between the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] is \[90^\circ \].
Note: We have found that the angle between the two angles is \[90^\circ \]. We can also picture the angle, since the angle is \[90^\circ \] the two angles are perpendicular to each other. Either the vector \[\overrightarrow a \] will be horizontal and the vector \[\overrightarrow b \] will be vertical or the vector \[\overrightarrow b \] will be horizontal and the vector \[\overrightarrow a \] will be vertical.
Formula: Formula that we need to know before solving this problem:
let \[\overrightarrow a \] and \[\overrightarrow b \] be two vectors then the magnitude of the resultant of these two vectors is \[\overrightarrow {\left| R \right|} = \sqrt {{a^2} + {b^2} + 2ab\cos \theta } \] where \[\theta \] the angle between the vectors \[\overrightarrow a \] and \[\overrightarrow b \].
Angle in degrees | \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] |
\[\cos \] | \[1\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{1}{2}\] | \[0\] |
Complete step-by-step solution:
It is given that the two vectors have magnitude \[3\] unit and \[4\] unit respectively and the magnitude of its resultant is \[5\] units. We aim to find the angle between the vectors.
Since we are given the magnitude of the resultant vector, we will use the formula to find the angle between the two vectors.
We know that the magnitude of the resultant vector of two vectors \[\overrightarrow a \] and \[\overrightarrow b \] \[\overrightarrow {\left| R \right|} = \sqrt {{a^2} + {b^2} + 2ab\cos \theta } \] where \[\theta \] the angle between the vectors \[\overrightarrow a \] and \[\overrightarrow b \].
We have that \[\left| {\overrightarrow a } \right| = a = 3\], \[\left| {\overrightarrow b } \right| = b = 4\] and \[\left| {\overrightarrow R } \right| = 5\] substituting these in the formula we get
\[5 = \sqrt {{3^2} + {4^2} + 2\left( 3 \right)\left( 4 \right)\cos \theta } \] where \[\theta \] the angle between the vectors \[\overrightarrow a \] and \[\overrightarrow b \].
On simplifying the above, we get
\[5 = \sqrt {9 + 16 + 24\cos \theta } \]
On simplifying further, we get
\[5 = \sqrt {25 + 24\cos \theta } \]
Now let us square the above expression on both sides
\[{5^2} = 25 + 24\cos \theta \]
\[25 = 25 + 24\cos \theta \]
\[0 = 24\cos \theta \]
\[\cos \theta = 0\]
We know that the value \[\cos \theta \]equals zero when the angle is \[90^\circ \]
Thus, \[\theta = 90^\circ \]
Therefore, the angle between the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] is \[90^\circ \].
Note: We have found that the angle between the two angles is \[90^\circ \]. We can also picture the angle, since the angle is \[90^\circ \] the two angles are perpendicular to each other. Either the vector \[\overrightarrow a \] will be horizontal and the vector \[\overrightarrow b \] will be vertical or the vector \[\overrightarrow b \] will be horizontal and the vector \[\overrightarrow a \] will be vertical.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE