Two vectors of equal magnitude have a resultant equal to either of them in magnitude. The angle between them is:
A. 60°
B. 90°
C. 105°
D. 120°
Answer
Verified
472.5k+ views
Hint: It is given that two vectors are equal in magnitude i.e. if A and B are two vectors then $\mid A \mid = \mid B \mid$. It is also mentioned that the magnitude of resultant is equal to the magnitude of either of them i.e. $\mid A \mid= \mid B \mid=\mid A+B \mid$. Find the resultant of both the vectors and then equate it with the magnitude of resultant of either of the vectors. After equating the equation, solve it and find the angle between them.
Formula used:
$|\overrightarrow { A+B } |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$
Complete answer:
Let the two vectors be $|\overrightarrow { A } |$ and $|\overrightarrow { B } |$.
$\theta$ be the angle between both the vectors.
Both the vectors have the same magnitude.
$\therefore |\overrightarrow { A } |= |\overrightarrow { A } |$ …(1)
Let the resultant have magnitude equal to vector A.
Thus, the resultant is given by,
$|\overrightarrow { A } |=|\overrightarrow { B } |=|\overrightarrow { A+B } |$ …(2)
The magnitude of resultant of two vectors is given by,
$|\overrightarrow { A+B } |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$ …(3)
From the equation. (2) and equation. (3) we get,
$|\overrightarrow { A } |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$
Squaring both the sides we get,
$\Rightarrow { |\overrightarrow { A } | }^{ 2 }={ { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$
Substituting equation. (1) in above equation we get,
${ |\overrightarrow { A } | }^{ 2 }={ { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { A } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { A } |\cos { \theta } }$
$\Rightarrow { |\overrightarrow { A } | }^{ 2 }={ { 2|\overrightarrow { A } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { A } |\cos { \theta } }$
$\Rightarrow -{ |\overrightarrow { A } | }^{ 2 }={ 2|\overrightarrow { A } ||\overrightarrow { A } |\cos { \theta } }$
$\Rightarrow { \cos { \theta } =-\cfrac { 1 }{ 2 } }$
$\Rightarrow \theta =\cos ^{ -1 }{ \left( \cfrac { 1 }{ 2 } \right) }$
$\Rightarrow \theta= 120°$
Hence, the angle between the two vectors is 120°.
So, the correct answer is “Option D”.
Note:
Students must remember that while adding two vectors don’t only consider the magnitude of the vectors but also consider the direction of both the vectors. If you don’t consider the direction then there might be an error in your calculation. If we double the resultant and reverse one of the vectors then the resultant gets doubled again.
Formula used:
$|\overrightarrow { A+B } |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$
Complete answer:
Let the two vectors be $|\overrightarrow { A } |$ and $|\overrightarrow { B } |$.
$\theta$ be the angle between both the vectors.
Both the vectors have the same magnitude.
$\therefore |\overrightarrow { A } |= |\overrightarrow { A } |$ …(1)
Let the resultant have magnitude equal to vector A.
Thus, the resultant is given by,
$|\overrightarrow { A } |=|\overrightarrow { B } |=|\overrightarrow { A+B } |$ …(2)
The magnitude of resultant of two vectors is given by,
$|\overrightarrow { A+B } |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$ …(3)
From the equation. (2) and equation. (3) we get,
$|\overrightarrow { A } |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$
Squaring both the sides we get,
$\Rightarrow { |\overrightarrow { A } | }^{ 2 }={ { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { B } |\cos { \theta } }$
Substituting equation. (1) in above equation we get,
${ |\overrightarrow { A } | }^{ 2 }={ { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { A } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { A } |\cos { \theta } }$
$\Rightarrow { |\overrightarrow { A } | }^{ 2 }={ { 2|\overrightarrow { A } | }^{ 2 }+2|\overrightarrow { A } ||\overrightarrow { A } |\cos { \theta } }$
$\Rightarrow -{ |\overrightarrow { A } | }^{ 2 }={ 2|\overrightarrow { A } ||\overrightarrow { A } |\cos { \theta } }$
$\Rightarrow { \cos { \theta } =-\cfrac { 1 }{ 2 } }$
$\Rightarrow \theta =\cos ^{ -1 }{ \left( \cfrac { 1 }{ 2 } \right) }$
$\Rightarrow \theta= 120°$
Hence, the angle between the two vectors is 120°.
So, the correct answer is “Option D”.
Note:
Students must remember that while adding two vectors don’t only consider the magnitude of the vectors but also consider the direction of both the vectors. If you don’t consider the direction then there might be an error in your calculation. If we double the resultant and reverse one of the vectors then the resultant gets doubled again.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE