Two waves in the same medium are represented by $y-t$ curves in the figure shown. Find the ratio of their average intensities.
$\begin{align}
& (A)\dfrac{25}{16} \\
& (B)\dfrac{23}{16} \\
& (C)\dfrac{21}{16} \\
& (D)\dfrac{27}{16} \\
\end{align}$
Answer
Verified
420.6k+ views
Hint: We have the graphical representation of two waves. From the graph, we can determine the Amplitude of the two sinusoidal waves. Once the amplitude of these waves are known, we can calculate the ratio of intensities of the two waves. This can be calculated using the fact that the intensity of any wave is proportional to the square of its amplitude. We will proceed in the above aforesaid manner.
Complete answer:
Let the amplitude of the larger wave be ${{A}_{1}}$ and the amplitude of the smaller wave be ${{A}_{2}}$. Then, from the given graphical diagram, we can say that:
$\Rightarrow {{A}_{1}}=5$ And,
$\Rightarrow {{A}_{2}}=2$
Now, the relation between intensity and amplitude of a wave is given by:
$\begin{align}
& \Rightarrow I\propto {{(A\omega )}^{2}} \\
& \Rightarrow I\propto {{(Af)}^{2}} \\
\end{align}$
Where f is the frequency of the wave.
This could be written as:
$\Rightarrow \dfrac{I}{{{(Af)}^{2}}}=k$
Where, k is an arbitrary constant called the constant of proportionality.
Therefore, for two waves in comparison. We can write as follows:
$\Rightarrow \dfrac{{{I}_{1}}}{{{A}_{1}}^{2}{{f}_{1}}^{2}}=\dfrac{{{I}_{2}}}{{{A}_{2}}^{2}{{f}_{2}}^{2}}$
On rearranging terms, we get:
$\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{{{A}_{1}}^{2}{{f}_{1}}^{2}}{{{A}_{2}}^{2}{{f}_{2}}^{2}}$
Putting the values of both the amplitudes in the above equation and simplifying the equation, we get:
$\begin{align}
& \Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{{{\left( 5 \right)}^{2}}{{\left( 1 \right)}^{2}}}{{{\left( 2 \right)}^{2}}{{\left( 2 \right)}^{2}}} \\
& \therefore \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{25}{16} \\
\end{align}$
Hence, the ratio of their average intensities of the two waves, comes out to be $\dfrac{25}{16}$.
Hence, option (A) is the correct option.
Note:
Here, the ratio of intensity would have been equal to the ratio of amplitude squared only, if the frequency of both the waves would have been the same. But that wasn’t the case, so we included an extra term, the angular frequency which is directly proportional to frequency into our equation to avoid mistakes. One should also be careful in writing the correct ratio in answer.
Complete answer:
Let the amplitude of the larger wave be ${{A}_{1}}$ and the amplitude of the smaller wave be ${{A}_{2}}$. Then, from the given graphical diagram, we can say that:
$\Rightarrow {{A}_{1}}=5$ And,
$\Rightarrow {{A}_{2}}=2$
Now, the relation between intensity and amplitude of a wave is given by:
$\begin{align}
& \Rightarrow I\propto {{(A\omega )}^{2}} \\
& \Rightarrow I\propto {{(Af)}^{2}} \\
\end{align}$
Where f is the frequency of the wave.
This could be written as:
$\Rightarrow \dfrac{I}{{{(Af)}^{2}}}=k$
Where, k is an arbitrary constant called the constant of proportionality.
Therefore, for two waves in comparison. We can write as follows:
$\Rightarrow \dfrac{{{I}_{1}}}{{{A}_{1}}^{2}{{f}_{1}}^{2}}=\dfrac{{{I}_{2}}}{{{A}_{2}}^{2}{{f}_{2}}^{2}}$
On rearranging terms, we get:
$\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{{{A}_{1}}^{2}{{f}_{1}}^{2}}{{{A}_{2}}^{2}{{f}_{2}}^{2}}$
Putting the values of both the amplitudes in the above equation and simplifying the equation, we get:
$\begin{align}
& \Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{{{\left( 5 \right)}^{2}}{{\left( 1 \right)}^{2}}}{{{\left( 2 \right)}^{2}}{{\left( 2 \right)}^{2}}} \\
& \therefore \dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{25}{16} \\
\end{align}$
Hence, the ratio of their average intensities of the two waves, comes out to be $\dfrac{25}{16}$.
Hence, option (A) is the correct option.
Note:
Here, the ratio of intensity would have been equal to the ratio of amplitude squared only, if the frequency of both the waves would have been the same. But that wasn’t the case, so we included an extra term, the angular frequency which is directly proportional to frequency into our equation to avoid mistakes. One should also be careful in writing the correct ratio in answer.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE