Answer
Verified
497.4k+ views
Hint: Add both the complex numbers formed and separate the real part and the imaginary part. To get a purely imaginary part, the real part should be zero.
Complete step-by-step solution -
A complex number is a number that can be expressed in the form of \[a+ib\], where \[a\] and \[b\] are real numbers and \[i\] is the solution of the equation \[{{x}^{2}}=-1\]. As no real number satisfies this equation, so \[i\] is called an imaginary number.
For a complex number \[a+ib\] ,\[a\] is called the real part and \[b\] is called the imaginary part.
A complex number system can be defined as the algebraic extension is the ordinary real number by an imaginary number. A complex number whose real part is zero can be called to be purely imaginary, the points for these numbers lie on the vertical axis of the complex plane.
Similarly, a complex number whose imaginary part is zero can be viewed as purely real, the points lie on the horizontal axis of the complex plane.
Given to us are the two complex numbers \[\left( {{x}_{1}}+i{{y}_{1}} \right)\]and\[\left( {{x}_{2}}+i{{y}_{2}} \right)\].
In this, \[{{x}_{1}}\] and \[{{x}_{2}}\] are the real parts of the complex number. \[{{y}_{1}}\] and \[{{y}_{2}}\] are the imaginary parts of the complex number.
Thus if we are adding both complex numbers, we get,
\[\left( {{x}_{1}}+i{{y}_{1}} \right)+\left( {{x}_{2}}+i{{y}_{2}} \right) = \left( {{x}_{1}}+{{x}_{2}} \right)+i\left( {{y}_{1}}+{{y}_{2}} \right)\].
In this expression formed \[\left( {{x}_{1}}+{{x}_{2}} \right)\] is the real part and \[i\left( {{y}_{1}}+{{y}_{2}} \right)\] is the imaginary part.
So if the sum has to be purely imaginary then the real part should be zero.
\[\therefore {{x}_{1}}+{{x}_{2}}=0\], then the sum becomes purely imaginary.
Hence, option A is the correct answer.
Note:- If the problem was to find the purely real then \[\left( {{y}_{1}}+{{y}_{2}} \right)\] should become zero as \[\left( {{y}_{1}}+{{y}_{2}} \right)\] are the real numbers. So to get purely real numbers, \[\left( {{y}_{1}}+{{y}_{2}} \right)\] should be zero. \[\therefore {{y}_{1}}+{{y}_{2}}=0\]
Complete step-by-step solution -
A complex number is a number that can be expressed in the form of \[a+ib\], where \[a\] and \[b\] are real numbers and \[i\] is the solution of the equation \[{{x}^{2}}=-1\]. As no real number satisfies this equation, so \[i\] is called an imaginary number.
For a complex number \[a+ib\] ,\[a\] is called the real part and \[b\] is called the imaginary part.
A complex number system can be defined as the algebraic extension is the ordinary real number by an imaginary number. A complex number whose real part is zero can be called to be purely imaginary, the points for these numbers lie on the vertical axis of the complex plane.
Similarly, a complex number whose imaginary part is zero can be viewed as purely real, the points lie on the horizontal axis of the complex plane.
Given to us are the two complex numbers \[\left( {{x}_{1}}+i{{y}_{1}} \right)\]and\[\left( {{x}_{2}}+i{{y}_{2}} \right)\].
In this, \[{{x}_{1}}\] and \[{{x}_{2}}\] are the real parts of the complex number. \[{{y}_{1}}\] and \[{{y}_{2}}\] are the imaginary parts of the complex number.
Thus if we are adding both complex numbers, we get,
\[\left( {{x}_{1}}+i{{y}_{1}} \right)+\left( {{x}_{2}}+i{{y}_{2}} \right) = \left( {{x}_{1}}+{{x}_{2}} \right)+i\left( {{y}_{1}}+{{y}_{2}} \right)\].
In this expression formed \[\left( {{x}_{1}}+{{x}_{2}} \right)\] is the real part and \[i\left( {{y}_{1}}+{{y}_{2}} \right)\] is the imaginary part.
So if the sum has to be purely imaginary then the real part should be zero.
\[\therefore {{x}_{1}}+{{x}_{2}}=0\], then the sum becomes purely imaginary.
Hence, option A is the correct answer.
Note:- If the problem was to find the purely real then \[\left( {{y}_{1}}+{{y}_{2}} \right)\] should become zero as \[\left( {{y}_{1}}+{{y}_{2}} \right)\] are the real numbers. So to get purely real numbers, \[\left( {{y}_{1}}+{{y}_{2}} \right)\] should be zero. \[\therefore {{y}_{1}}+{{y}_{2}}=0\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE