
How do you use De Moivre’s theorem to find $ {{\left( 1+i \right)}^{20}} $ in slandered form?
Answer
548.7k+ views
Hint: We explain the derivation of De Moivre’s theorem from Euler’s theorem. We state the theorems related to the power of $ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ . The given equation $ \left( 1+i \right) $ is not in unit circle region. We convert it by dividing with its modulus value. Then we apply the theorems to final answer.
Complete step by step answer:
De Moivre’s theorem is actually a derivation of the Euler’s theorem. The theorem tells us
$ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ . Here $ i $ represents the imaginary value where $ i=\sqrt{-1} $ .
The equation represents a circle of the unit radius in the complex plane. It is also called Gauss’s plane.
Here X-axis is a regular real axis but the Y-axis is regarded as the imaginary axis.
We also have the indices theorem for $ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ where
$ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ .
The given imaginary number $ \left( 1+i \right) $ doesn’t lie in the unit circle as $ \left| 1+i \right|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2} $ .
We need to convert it into a unit circle equation to apply De Moivre’s theorem directly.
We can divide the equation $ \left( 1+i \right) $ by its norm $ \left| 1+i \right|=\sqrt{2} $ .
We get that $ \left( 1+i \right)=\sqrt{2}\left( \dfrac{1+i}{\sqrt{2}} \right)=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ .
Now if $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ then \[\left| z \right|=\sqrt{{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}}=1\].
We can apply De Moivre’s theorem directly for z where $ \left( 1+i \right)=\sqrt{2}z $ .
Therefore, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
Now we solve both the constant and the imaginary part.
From indices theorem we know \[{{\left( \sqrt{2} \right)}^{20}}={{\left( {{2}^{\dfrac{1}{2}}} \right)}^{20}}={{2}^{\dfrac{1}{2}\times 20}}={{2}^{10}}\].
We know $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)=\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right] $
Now, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
We solve for \[{{\left( z \right)}^{20}}\] where \[{{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}}\].
Applying $ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ we get,
\[\begin{align}
& {{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}} \\
& =\cos \left( 20\times \dfrac{\pi }{4} \right)+i\sin \left( 20\times \dfrac{\pi }{4} \right) \\
& =\cos \left( 5\pi \right)+i\sin \left( 5\pi \right) \\
\end{align}\]
Now we solve for the angle $ 5\pi $ . We get \[\cos \left( 5\pi \right)+i\sin \left( 5\pi \right)=-1\].
Therefore, \[{{\left( z \right)}^{20}}=-1\].
We get \[{{\left( 1+i \right)}^{20}}=\left( -1 \right)\times {{2}^{10}}=-{{2}^{10}}\].
Note:
We need to remember that in the complex plane these coordinates are related in the same form as the real plane. For coordinates $ \left( x,y \right) $ , we have $ x=r\cos \theta $ and $ y=r\sin \theta $ . Here $ \theta $ is the angle of the joining line of the point in the unit circle with the origin.
Complete step by step answer:
De Moivre’s theorem is actually a derivation of the Euler’s theorem. The theorem tells us
$ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ . Here $ i $ represents the imaginary value where $ i=\sqrt{-1} $ .
The equation represents a circle of the unit radius in the complex plane. It is also called Gauss’s plane.
Here X-axis is a regular real axis but the Y-axis is regarded as the imaginary axis.
We also have the indices theorem for $ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ where
$ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ .
The given imaginary number $ \left( 1+i \right) $ doesn’t lie in the unit circle as $ \left| 1+i \right|=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2} $ .
We need to convert it into a unit circle equation to apply De Moivre’s theorem directly.
We can divide the equation $ \left( 1+i \right) $ by its norm $ \left| 1+i \right|=\sqrt{2} $ .
We get that $ \left( 1+i \right)=\sqrt{2}\left( \dfrac{1+i}{\sqrt{2}} \right)=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ .
Now if $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right) $ then \[\left| z \right|=\sqrt{{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}}=1\].
We can apply De Moivre’s theorem directly for z where $ \left( 1+i \right)=\sqrt{2}z $ .
Therefore, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
Now we solve both the constant and the imaginary part.
From indices theorem we know \[{{\left( \sqrt{2} \right)}^{20}}={{\left( {{2}^{\dfrac{1}{2}}} \right)}^{20}}={{2}^{\dfrac{1}{2}\times 20}}={{2}^{10}}\].
We know $ z=\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)=\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right] $
Now, \[{{\left( 1+i \right)}^{20}}={{\left( \sqrt{2}z \right)}^{20}}={{\left( \sqrt{2} \right)}^{20}}{{\left( z \right)}^{20}}\].
We solve for \[{{\left( z \right)}^{20}}\] where \[{{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}}\].
Applying $ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right) $ we get,
\[\begin{align}
& {{\left( z \right)}^{20}}={{\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]}^{20}} \\
& =\cos \left( 20\times \dfrac{\pi }{4} \right)+i\sin \left( 20\times \dfrac{\pi }{4} \right) \\
& =\cos \left( 5\pi \right)+i\sin \left( 5\pi \right) \\
\end{align}\]
Now we solve for the angle $ 5\pi $ . We get \[\cos \left( 5\pi \right)+i\sin \left( 5\pi \right)=-1\].
Therefore, \[{{\left( z \right)}^{20}}=-1\].
We get \[{{\left( 1+i \right)}^{20}}=\left( -1 \right)\times {{2}^{10}}=-{{2}^{10}}\].
Note:
We need to remember that in the complex plane these coordinates are related in the same form as the real plane. For coordinates $ \left( x,y \right) $ , we have $ x=r\cos \theta $ and $ y=r\sin \theta $ . Here $ \theta $ is the angle of the joining line of the point in the unit circle with the origin.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

