
How do you use DeMoivre’s theorem to simplify \[{( - 1 + i)^{10}}\]?
Answer
553.5k+ views
Hint: Try to convert the complex number into polar form first. Then apply the DeMoivre’s theorem and write \[{(i - 1)^{10}}\] in the complex form of \[a + bi\], where \[a\,\,and\,\,b\] are the real numbers and these numbers do not use the trigonometric function. After rearranging the term and getting in the general form for the theorem we can proceed with the question.
Complete step by step solution:
The given question is \[{( - 1 + i)^{10}}\]. \[{( - 1 + i)^{10}}\] can be also written as \[{(i - 1)^{10}}\]. First write the complex number in polar form, that is in the form of \[a + bi\] and then apply the De-Moivre’s theorem .De-Moivre’s theorem states that:
\[ \Rightarrow x + iy = \sqrt {{x^2} + {y^2}{e^{i\theta }}} \] \[where\,{e^{i\theta }} = cos(\phi ) + i\sin (\phi )\];\[\phi = \arctan \left( {\dfrac{y}{x}} \right)\]
Applying this to our question and after solving, we get:
\[ \Rightarrow - 1 + i = \sqrt {2{e^{ - 1\dfrac{\pi }{4}}}} \]
Now putting the value in our question, proceeding further, on solving we get:
\[ \Rightarrow {(i - 1)^{10}} = {(\sqrt {2{e^{ - i\dfrac{\pi }{4}}}} )^{10}} = {(\surd 2)^{10}}{e^{ - i\dfrac{{10\pi }}{4}}}\]
But,\[{e^{ - i\dfrac{{10\pi }}{4}}} = {e^{ - i\dfrac{{8\pi }}{4}}} \cdot {e^{ - i\dfrac{\pi }{2}}} = {e^{ - i\dfrac{\pi }{4}}}\]
\[ \Rightarrow {(\sqrt 2 )^{10}} = 32\]
\[ \therefore {(i - 1)^{10}} = - 32i\]
So, this is the final answer in the polar form of the given complex number.
Hence, we finally get \[{(i - 1)^{10}} = - 32i\] as the answer.
Additional information:
Dealing with the complex equation you have to be careful only when you are dealing in a higher degree equation because there the value of “iota” is given as for higher degree terms and accordingly the question needs to be solved and simplification can be done.
Note: After the development of iota, research leads with the formulas associated and the properties like summation, subtraction, multiplication and division for the complex numbers. Graphs for complex numbers are also designed and the area under which graph is drawn contains complex numbers only, but the relation between complex and real numbers can be drawn.
Complete step by step solution:
The given question is \[{( - 1 + i)^{10}}\]. \[{( - 1 + i)^{10}}\] can be also written as \[{(i - 1)^{10}}\]. First write the complex number in polar form, that is in the form of \[a + bi\] and then apply the De-Moivre’s theorem .De-Moivre’s theorem states that:
\[ \Rightarrow x + iy = \sqrt {{x^2} + {y^2}{e^{i\theta }}} \] \[where\,{e^{i\theta }} = cos(\phi ) + i\sin (\phi )\];\[\phi = \arctan \left( {\dfrac{y}{x}} \right)\]
Applying this to our question and after solving, we get:
\[ \Rightarrow - 1 + i = \sqrt {2{e^{ - 1\dfrac{\pi }{4}}}} \]
Now putting the value in our question, proceeding further, on solving we get:
\[ \Rightarrow {(i - 1)^{10}} = {(\sqrt {2{e^{ - i\dfrac{\pi }{4}}}} )^{10}} = {(\surd 2)^{10}}{e^{ - i\dfrac{{10\pi }}{4}}}\]
But,\[{e^{ - i\dfrac{{10\pi }}{4}}} = {e^{ - i\dfrac{{8\pi }}{4}}} \cdot {e^{ - i\dfrac{\pi }{2}}} = {e^{ - i\dfrac{\pi }{4}}}\]
\[ \Rightarrow {(\sqrt 2 )^{10}} = 32\]
\[ \therefore {(i - 1)^{10}} = - 32i\]
So, this is the final answer in the polar form of the given complex number.
Hence, we finally get \[{(i - 1)^{10}} = - 32i\] as the answer.
Additional information:
Dealing with the complex equation you have to be careful only when you are dealing in a higher degree equation because there the value of “iota” is given as for higher degree terms and accordingly the question needs to be solved and simplification can be done.
Note: After the development of iota, research leads with the formulas associated and the properties like summation, subtraction, multiplication and division for the complex numbers. Graphs for complex numbers are also designed and the area under which graph is drawn contains complex numbers only, but the relation between complex and real numbers can be drawn.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

