
How do you use fundamental method of calculus to find the derivative of the function $y=\int{{{\sin }^{3}}t}dt$ from $\left[ {{e}^{x}},0 \right]$.
Answer
553.2k+ views
Hint: We know that the derivative of $\int\limits_{g\left( x \right)}^{h\left( x \right)}{f\left( t \right)dt}$ with respect to x is equal to f( h (x)) h’ (x) –f(g(x)) g’(x) where h’(x) is the derivative h(x) with respect to x and g’ (x) is the derivative of g(x) with respect to x. We can use this formula to solve the given question.
Complete step-by-step solution:
We have to find the derivative of $y=\int{{{\sin }^{3}}t}dt$ where the limits are from ${{e}^{x}}$ to 0.
We know that derivative of $\int\limits_{g\left( x \right)}^{h\left( x \right)}{f\left( t \right)dt}$ with respect to x is equal to f( h (x)) h’ (x) –f(g(x)) g’(x) , So here function f is ${{\sin }^{3}}t$ , function g is ${{e}^{x}}$ and function h is 0.
So, if we will apply the formula, we will get
$\dfrac{d}{dx}\left( \int\limits_{{{e}^{x}}}^{0}{{{\sin }^{3}}tdt} \right)={{\sin }^{3}}\left( 0 \right)\times 0-{{\sin }^{3}}\left( {{e}^{x}} \right)\dfrac{d{{e}^{x}}}{dx}$
We know the derivative of ${{e}^{x}}$ with respect to x is equal to ${{e}^{x}}$ and derivative of any constant number is equal to 0.
So we can write $\dfrac{d}{dx}\left( \int\limits_{{{e}^{x}}}^{0}{{{\sin }^{3}}tdt} \right)=-{{e}^{x}}{{\sin }^{3}}\left( {{e}^{x}} \right)$
$-{{e}^{x}}{{\sin }^{3}}\left( {{e}^{x}} \right)$ is the correct answer of $\dfrac{d}{dx}\left( \int\limits_{{{e}^{x}}}^{0}{{{\sin }^{3}}tdt} \right)$
Note: While applying the formula $\int\limits_{g\left( x \right)}^{h\left( x \right)}{f\left( t \right)dt}$ = f( h (x)) h’ (x) –f(g(x)) g’(x) keep in mind the function f does not have variable x within it , if the function f is f ( x, t) then we can not apply the above formula. We should note that the limits of the integration should be of the same variable to the variable with respect to which we will differentiate.
Complete step-by-step solution:
We have to find the derivative of $y=\int{{{\sin }^{3}}t}dt$ where the limits are from ${{e}^{x}}$ to 0.
We know that derivative of $\int\limits_{g\left( x \right)}^{h\left( x \right)}{f\left( t \right)dt}$ with respect to x is equal to f( h (x)) h’ (x) –f(g(x)) g’(x) , So here function f is ${{\sin }^{3}}t$ , function g is ${{e}^{x}}$ and function h is 0.
So, if we will apply the formula, we will get
$\dfrac{d}{dx}\left( \int\limits_{{{e}^{x}}}^{0}{{{\sin }^{3}}tdt} \right)={{\sin }^{3}}\left( 0 \right)\times 0-{{\sin }^{3}}\left( {{e}^{x}} \right)\dfrac{d{{e}^{x}}}{dx}$
We know the derivative of ${{e}^{x}}$ with respect to x is equal to ${{e}^{x}}$ and derivative of any constant number is equal to 0.
So we can write $\dfrac{d}{dx}\left( \int\limits_{{{e}^{x}}}^{0}{{{\sin }^{3}}tdt} \right)=-{{e}^{x}}{{\sin }^{3}}\left( {{e}^{x}} \right)$
$-{{e}^{x}}{{\sin }^{3}}\left( {{e}^{x}} \right)$ is the correct answer of $\dfrac{d}{dx}\left( \int\limits_{{{e}^{x}}}^{0}{{{\sin }^{3}}tdt} \right)$
Note: While applying the formula $\int\limits_{g\left( x \right)}^{h\left( x \right)}{f\left( t \right)dt}$ = f( h (x)) h’ (x) –f(g(x)) g’(x) keep in mind the function f does not have variable x within it , if the function f is f ( x, t) then we can not apply the above formula. We should note that the limits of the integration should be of the same variable to the variable with respect to which we will differentiate.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

