Answer
Verified
451.2k+ views
Hint: We need to convert the above equation in the form of $ {(a + b)^2} $ or $ {(a - b)^2} $ based on ease of solving and then finding the value accordingly using the formulas.
Formula:
$ {(a - b)^2} = {a^2} + {b^2} - 2ab $
$ {(a + b)^2} = {a^2} + {b^2} + 2ab $
Complete step-by-step answer:
First, we have to understand the meaning of identity equation which we will use to solve the equation
An identity equation is an equation that is always true for any value substituted into the variable i.e. no matter whatsoever value we put at the place of the variables of the equation the algebraic equation remains valid. They are also used for the factorization of polynomials including computation of algebraic expressions and solving different polynomials.
Now, to solve the above equation we need to express the equation $ {(97)^2} $ in the form of $ \Rightarrow {(a - b)^2} $ or $ {(a + b)^2} $
Hence, $ {(97)^2} $ can be written as $ {(100 - 3)^2} $ or $ {(90 + 7)^2} $
From the above two forms we need to choose any one based on our convenience. According to me, $ {(100 - 3)^2} $ will be comparatively easier so let go with it.
So, $ {(97)^2} = {(100 - 3)^2} $
$ = {(100)^2} + {(3)^2} - (2 \times 100 \times 3) $ [using the formula $ {(a - b)^2} = {a^2} + {b^2} - 2ab $ ]
$ = 10000 + 9 - 600 $
$ = 9409 $
Hence, the value of $ {(97)^2} $ is $9409$.
So, the correct answer is “Option B”.
Additional Information:
The above two formulas are the most frequently used equations. Similarly, we have few more basic identity equations which we need to memorize for lifelong because we may come across them frequently. Kindly go through the below equation and try to memorize them.
Identity I: $ {(a + b)^2} = {a^2} + {b^2} + 2ab $
Identity II: $ {(a - b)^2} = {a^2} + {b^2} - 2ab $
Identity III: $ {a^2} - {b^2} = (a + b)(a - b) $
Identity IV: $ (x + a)(x + b) = {x^2} + (a + b)x + ab $
Identity V: $ {(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca $
Identity VI: $ {(a + b)^3} = {a^3} + {b^3} + 3ab(a + b) $
Identity VII: $ {(a - b)^3} = {a^3} - {b^3} - 3ab(a - b) $
Identity VIII: $ {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) $
Note: We need to choose in between $ {(a - b)^2} $ and $ {(a + b)^2} $ based on our time availability and comfort level. Both the equations will eventually land you to the right answer. Additionally, we should try to remember the above formulas for solving the equations conveniently.
Formula:
$ {(a - b)^2} = {a^2} + {b^2} - 2ab $
$ {(a + b)^2} = {a^2} + {b^2} + 2ab $
Complete step-by-step answer:
First, we have to understand the meaning of identity equation which we will use to solve the equation
An identity equation is an equation that is always true for any value substituted into the variable i.e. no matter whatsoever value we put at the place of the variables of the equation the algebraic equation remains valid. They are also used for the factorization of polynomials including computation of algebraic expressions and solving different polynomials.
Now, to solve the above equation we need to express the equation $ {(97)^2} $ in the form of $ \Rightarrow {(a - b)^2} $ or $ {(a + b)^2} $
Hence, $ {(97)^2} $ can be written as $ {(100 - 3)^2} $ or $ {(90 + 7)^2} $
From the above two forms we need to choose any one based on our convenience. According to me, $ {(100 - 3)^2} $ will be comparatively easier so let go with it.
So, $ {(97)^2} = {(100 - 3)^2} $
$ = {(100)^2} + {(3)^2} - (2 \times 100 \times 3) $ [using the formula $ {(a - b)^2} = {a^2} + {b^2} - 2ab $ ]
$ = 10000 + 9 - 600 $
$ = 9409 $
Hence, the value of $ {(97)^2} $ is $9409$.
So, the correct answer is “Option B”.
Additional Information:
The above two formulas are the most frequently used equations. Similarly, we have few more basic identity equations which we need to memorize for lifelong because we may come across them frequently. Kindly go through the below equation and try to memorize them.
Identity I: $ {(a + b)^2} = {a^2} + {b^2} + 2ab $
Identity II: $ {(a - b)^2} = {a^2} + {b^2} - 2ab $
Identity III: $ {a^2} - {b^2} = (a + b)(a - b) $
Identity IV: $ (x + a)(x + b) = {x^2} + (a + b)x + ab $
Identity V: $ {(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca $
Identity VI: $ {(a + b)^3} = {a^3} + {b^3} + 3ab(a + b) $
Identity VII: $ {(a - b)^3} = {a^3} - {b^3} - 3ab(a - b) $
Identity VIII: $ {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca) $
Note: We need to choose in between $ {(a - b)^2} $ and $ {(a + b)^2} $ based on our time availability and comfort level. Both the equations will eventually land you to the right answer. Additionally, we should try to remember the above formulas for solving the equations conveniently.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE