Answer
Verified
430.5k+ views
Hint: In this question, we need to find the equation of the tangent to the curve \[{x^2} + 2xy - {y^2} + x = 39\] at the point \[\left( {5,9} \right)\], this is done by differentiating with respect to x the given equation and then obtain the equation of the tangent line by substituting the points.
Complete Step By Step solution:
In this question we have given the equation as \[{x^2} + 2xy - {y^2} + x = 39\] and we need to find the equation of the tangent line to the given curve.
First we will differentiate the above equation with respect to x as,
\[
\Rightarrow \dfrac{d}{{dx}}\left( {{x^2} + 2xy - {y^2} + x} \right) = \dfrac{d}{{dx}}\left( {39} \right) \\
\Rightarrow 2x + 2y + 2x\dfrac{{dy}}{{dx}} - 2y\dfrac{{dy}}{{dx}} + 1 = 0 \\
\Rightarrow \left( {2x - 2y} \right)\dfrac{{dy}}{{dx}} = - 1 - 2x - 2y \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2x + 2y}}{{2y - 2x}} \\
\]
As we can see in the above calculation the term \[2xy\] is differentiated by the chain rule.
The formula to determine the equation of the tangent line is given below.
\[y = {y_0} + y'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\]
For the above equation to calculate the value of \[y'\left( {{x_0}} \right)\] we will substitute the initial condition in the equation as,
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2\left( 5 \right) + 2\left( 9 \right)}}{{2\left( 9 \right) - 2\left( 5 \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 10 + 18}}{{18 - 10}} \\
\]
After simplification we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{29}}{8}\]
Now we will get the equation for the tangent line obtained by substituting the value of the initial points as shown below.
\[
y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\Rightarrow y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\]
After simplification we will get,
\[\therefore 29x - 8y = 73\]
Thus, the equation \[29x - 8y = 73\] is the equation of the tangent line that is tangent to the equation \[{x^2} + 2xy - {y^2} - x = 39\] at the point \[\left( {5,9} \right)\].
Note:
The process to find the derivative of the function is called differentiation, in differentiation the instantaneous rate of change of function based on the variable. In implicit differentiation each side of the equation with the two variables is differentiated, this is done by treating one of the variables as the other's function.
Complete Step By Step solution:
In this question we have given the equation as \[{x^2} + 2xy - {y^2} + x = 39\] and we need to find the equation of the tangent line to the given curve.
First we will differentiate the above equation with respect to x as,
\[
\Rightarrow \dfrac{d}{{dx}}\left( {{x^2} + 2xy - {y^2} + x} \right) = \dfrac{d}{{dx}}\left( {39} \right) \\
\Rightarrow 2x + 2y + 2x\dfrac{{dy}}{{dx}} - 2y\dfrac{{dy}}{{dx}} + 1 = 0 \\
\Rightarrow \left( {2x - 2y} \right)\dfrac{{dy}}{{dx}} = - 1 - 2x - 2y \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2x + 2y}}{{2y - 2x}} \\
\]
As we can see in the above calculation the term \[2xy\] is differentiated by the chain rule.
The formula to determine the equation of the tangent line is given below.
\[y = {y_0} + y'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\]
For the above equation to calculate the value of \[y'\left( {{x_0}} \right)\] we will substitute the initial condition in the equation as,
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2\left( 5 \right) + 2\left( 9 \right)}}{{2\left( 9 \right) - 2\left( 5 \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 10 + 18}}{{18 - 10}} \\
\]
After simplification we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{29}}{8}\]
Now we will get the equation for the tangent line obtained by substituting the value of the initial points as shown below.
\[
y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\Rightarrow y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\]
After simplification we will get,
\[\therefore 29x - 8y = 73\]
Thus, the equation \[29x - 8y = 73\] is the equation of the tangent line that is tangent to the equation \[{x^2} + 2xy - {y^2} - x = 39\] at the point \[\left( {5,9} \right)\].
Note:
The process to find the derivative of the function is called differentiation, in differentiation the instantaneous rate of change of function based on the variable. In implicit differentiation each side of the equation with the two variables is differentiated, this is done by treating one of the variables as the other's function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE