Answer
Verified
399.9k+ views
Hint: As we know that we have to apply the pascal’s triangle to expand the binomial. We know that it is an infinite equilateral triangle which consists of sequence of numbers. It starts with $ 1 $ . The second row consists of the sum of two numbers above it, Similarly we can find out the values of the next rows. It creates a pattern and it is shown below:
$
1 \\
1 - 1 \\
1 - 2 - 1 \\
1 - 3 - 3 - 1 \\
\\
$
Complete step-by-step answer:
As we know that the main application of this triangle is to solve a binomial function. If the binomial equation is $ {(a + b)^n} $ , then the expansion is
$ {C_1}{a^n}{b^0} + {C_2}{a^{n - 1}}{b^1} + ... + {C_n}{a^0}{b^n} $ .
Since we have $ n = 3 $ , and from the above triangle we can see that the third order term is $ 1,3,3,1 $ .
For this we have the formula,
$ {(a - b)^3} = 1{a^3}{b^0} - 3{a^2}{b^1} + 3{a^1}{b^2} - 1{a^0}{b^3} $ .
By applying the above formula we can write
$ {(2x - 3y)^3} = 1{(2x)^3}{(3y)^0} - 3{(2x)^2}{(3y)^1} + 3{(2x)^1}{(3y)^2} - 1{(2x)^0}{(3y)^3} $ .
On further simplifying we have,
$ {(2x)^3} - 3{(2x)^2}{(3y)^{}} + 3{(2x)^1}{(3y)^2} - {(3y)^3} $ .
It gives us the expression:
$ 8{x^3} - 3 \times 4{x^2}{(3y)^{}} + 6x \times 9{y^2} - 27{y^3} $ .
Hence the required value is $ 8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3} $ .
So, the correct answer is “ $ 8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3} $ ”.
Note: We should note that pascal’s triangle is helpful only when the value of $ n $ is small in the equation $ {(a + b)^n} $ . If the value is large then it is very tedious to draw the triangle until we reach $ n $ . The formula that we used above because the question has a cube of the difference. It there is cube of the sums then the formula that we use is $ {(a + b)^3} = 1{a^3}{b^0} + 3{a^2}{b^1} + 3{a^1}{b^2} + 1{a^0}{b^3} $ .
$
1 \\
1 - 1 \\
1 - 2 - 1 \\
1 - 3 - 3 - 1 \\
\\
$
Complete step-by-step answer:
As we know that the main application of this triangle is to solve a binomial function. If the binomial equation is $ {(a + b)^n} $ , then the expansion is
$ {C_1}{a^n}{b^0} + {C_2}{a^{n - 1}}{b^1} + ... + {C_n}{a^0}{b^n} $ .
Since we have $ n = 3 $ , and from the above triangle we can see that the third order term is $ 1,3,3,1 $ .
For this we have the formula,
$ {(a - b)^3} = 1{a^3}{b^0} - 3{a^2}{b^1} + 3{a^1}{b^2} - 1{a^0}{b^3} $ .
By applying the above formula we can write
$ {(2x - 3y)^3} = 1{(2x)^3}{(3y)^0} - 3{(2x)^2}{(3y)^1} + 3{(2x)^1}{(3y)^2} - 1{(2x)^0}{(3y)^3} $ .
On further simplifying we have,
$ {(2x)^3} - 3{(2x)^2}{(3y)^{}} + 3{(2x)^1}{(3y)^2} - {(3y)^3} $ .
It gives us the expression:
$ 8{x^3} - 3 \times 4{x^2}{(3y)^{}} + 6x \times 9{y^2} - 27{y^3} $ .
Hence the required value is $ 8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3} $ .
So, the correct answer is “ $ 8{x^3} - 36{x^2}y + 54x{y^2} - 27{y^3} $ ”.
Note: We should note that pascal’s triangle is helpful only when the value of $ n $ is small in the equation $ {(a + b)^n} $ . If the value is large then it is very tedious to draw the triangle until we reach $ n $ . The formula that we used above because the question has a cube of the difference. It there is cube of the sums then the formula that we use is $ {(a + b)^3} = 1{a^3}{b^0} + 3{a^2}{b^1} + 3{a^1}{b^2} + 1{a^0}{b^3} $ .
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE