
How do you use power series to solve the differential equation $y' = xy$?
Answer
552.9k+ views
Hint: In the above question, the concept is based on the concept of differentiating an equation using power series. The main approach towards solving this is to find a power series solution for the differential equation around point \[{x_0}\].
Complete step by step solution:
In mathematics, a power series is an infinite series of the form
\[\sum\limits_{n = 0}^\infty {{a_n}{{\left( {x - c} \right)}^n} = {a_0} + {a_1}{{\left( {x - c} \right)}^1} + {a_2}{{\left( {x - c} \right)}^2} + ...} \]
where ${a_n}$ is the coefficient of the nth term, c is a constant term and x is the variable.
Generally, it can be written as
Let
\[y = \sum\limits_{n = 1}^\infty {{c_n}{x^n}} \]
So now by derivating the above term we get,
\[y' = \sum\limits_{n = 1}^\infty {n{c_n}{x^{n - 1}}} \]
Now, the given differential equation is
$y' = xy$
By substituting the power series we get,
$\sum\limits_{n = 1}^\infty {n{c_{_n}}{x^{n - 1}} = x\sum\limits_{n = 0}^\infty {n{c_n}{x^n}} } $
By extracting the first term from the summation on the left,
\[{c_1} + \sum\limits_{n = 0}^\infty {n{c_n}{x^{n - 1}} = \sum\limits_{n = 0}^\infty {{c_n}{x^{n + 1}}} }
\]
By shifting the indices of the summation on the left by 2
\[{c_1} + \sum\limits_{n = 0}^\infty {\left( {n + 2} \right){c_{n + 2}}{x^{n + 1}} = \sum\limits_{n = 0}^\infty {{c_n}{x^{n + 1}}} } \]
By making the coefficients match,
\[{c_1} = 0\] and \[\left( {n + 2} \right){c_{n + 2}} = {c_n} \Rightarrow {c_{n + 2}} = \dfrac{{{c_n}}}{{n + 2}}\]
Now let us focus on the odd terms
\[
{c_3} = \dfrac{{{c_1}}}{3} = \dfrac{0}{3} = 0 \\
{c_5} = \dfrac{{{c_3}}}{5} = \dfrac{0}{5} = 0 \\
\]
The general term of the above odd series can be written as \[{c_{2n + 1}} = 0\]
Now let us look at the even terms.
$
{c_2} = \dfrac{{{c_0}}}{2} \\
{c_4} = \dfrac{{{c_2}}}{2} = \dfrac{{{c_0}}}{{4 \times 2}} = \dfrac{{{c_0}}}{{{2^2} \times 3!}} \\
$
The general term of the above even series can be written as
\[{c_{2n}} = \dfrac{{{c_0}}}{{{2^n} \times n!}}\] Therefore, by substituting we get,
\[y = \sum\limits_{n = 0}^\infty {\dfrac{{{c_0}}}{{{2^n} \times n!}}{x^{2n}} = {c_0}\sum\limits_{n = 0}^\infty {\dfrac{{{{\left( {\dfrac{{{x^2}}}{2}} \right)}^n}}}{{n!}} = {c_0}{e^{\dfrac{{{x^2}}}{2}}}} } \]
Now replacing x by \[\dfrac{{{x^2}}}{2}\]in \[{e^x}\] we get,
\[\sum\limits_{n = 0}^\infty {\dfrac{{{x^n}}}{{n!}}} \]
Note: An important thing to note is that the general terms \[{c_{2n + 1}} = 0\] and \[{c_{2n}} = \dfrac{{{c_0}}}{{{2^n} \times n!}}\] is figured out in such a way that we need to check the pattern of the series of the odd terms and the even terms.Since in the odd terms were giving value as 0 and for even the power with base 2 is same that is why we get the above general terms.
Complete step by step solution:
In mathematics, a power series is an infinite series of the form
\[\sum\limits_{n = 0}^\infty {{a_n}{{\left( {x - c} \right)}^n} = {a_0} + {a_1}{{\left( {x - c} \right)}^1} + {a_2}{{\left( {x - c} \right)}^2} + ...} \]
where ${a_n}$ is the coefficient of the nth term, c is a constant term and x is the variable.
Generally, it can be written as
Let
\[y = \sum\limits_{n = 1}^\infty {{c_n}{x^n}} \]
So now by derivating the above term we get,
\[y' = \sum\limits_{n = 1}^\infty {n{c_n}{x^{n - 1}}} \]
Now, the given differential equation is
$y' = xy$
By substituting the power series we get,
$\sum\limits_{n = 1}^\infty {n{c_{_n}}{x^{n - 1}} = x\sum\limits_{n = 0}^\infty {n{c_n}{x^n}} } $
By extracting the first term from the summation on the left,
\[{c_1} + \sum\limits_{n = 0}^\infty {n{c_n}{x^{n - 1}} = \sum\limits_{n = 0}^\infty {{c_n}{x^{n + 1}}} }
\]
By shifting the indices of the summation on the left by 2
\[{c_1} + \sum\limits_{n = 0}^\infty {\left( {n + 2} \right){c_{n + 2}}{x^{n + 1}} = \sum\limits_{n = 0}^\infty {{c_n}{x^{n + 1}}} } \]
By making the coefficients match,
\[{c_1} = 0\] and \[\left( {n + 2} \right){c_{n + 2}} = {c_n} \Rightarrow {c_{n + 2}} = \dfrac{{{c_n}}}{{n + 2}}\]
Now let us focus on the odd terms
\[
{c_3} = \dfrac{{{c_1}}}{3} = \dfrac{0}{3} = 0 \\
{c_5} = \dfrac{{{c_3}}}{5} = \dfrac{0}{5} = 0 \\
\]
The general term of the above odd series can be written as \[{c_{2n + 1}} = 0\]
Now let us look at the even terms.
$
{c_2} = \dfrac{{{c_0}}}{2} \\
{c_4} = \dfrac{{{c_2}}}{2} = \dfrac{{{c_0}}}{{4 \times 2}} = \dfrac{{{c_0}}}{{{2^2} \times 3!}} \\
$
The general term of the above even series can be written as
\[{c_{2n}} = \dfrac{{{c_0}}}{{{2^n} \times n!}}\] Therefore, by substituting we get,
\[y = \sum\limits_{n = 0}^\infty {\dfrac{{{c_0}}}{{{2^n} \times n!}}{x^{2n}} = {c_0}\sum\limits_{n = 0}^\infty {\dfrac{{{{\left( {\dfrac{{{x^2}}}{2}} \right)}^n}}}{{n!}} = {c_0}{e^{\dfrac{{{x^2}}}{2}}}} } \]
Now replacing x by \[\dfrac{{{x^2}}}{2}\]in \[{e^x}\] we get,
\[\sum\limits_{n = 0}^\infty {\dfrac{{{x^n}}}{{n!}}} \]
Note: An important thing to note is that the general terms \[{c_{2n + 1}} = 0\] and \[{c_{2n}} = \dfrac{{{c_0}}}{{{2^n} \times n!}}\] is figured out in such a way that we need to check the pattern of the series of the odd terms and the even terms.Since in the odd terms were giving value as 0 and for even the power with base 2 is same that is why we get the above general terms.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

