Answer
Verified
396.6k+ views
Hint: As we know that we have to apply the pascal’s triangle to expand the binomial. We know that it is an infinite equilateral triangle which consists of a sequence of numbers. It starts with $1$. The second row consists of the sum of two numbers above it, Similarly we can find out the values of the next rows.
Complete step-by-step answer:
As we know that the main application of this triangle is to solve a binomial function. If the binomial equation is ${(a + b)^n}$, then the expansion is ${C_1}{a^n}{b^0} + {C_2}{a^{n - 1}}{b^1} + ... + {C_n}{a^0}{b^n}$.
The above equation represents the binomial expansion formula.
But here we are not going to solve this question by the binomial expansion.
Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. Pascal's triangle contains the values of the binomial coefficient.
The pascal’s triangle is given by
\[\begin{array}{*{20}{c}}
{{{(x + y)}^0} = } \\
{{{(x + y)}^1} = } \\
{{{(x + y)}^2} = } \\
{{{(x + y)}^3} = } \\
{{{(x + y)}^4} = } \\
{{{(x + y)}^5} = }
\end{array}\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{} \\
{}&{}&{}&{}&1&{}&1&{}&{}&{}&{} \\
{}&{}&{}&1&{}&2&{}&1&{}&{}&{} \\
{}&{}&1&{}&3&{}&3&{}&1&{}&{} \\
{}&1&{}&4&{}&6&{}&4&{}&1&{} \\
1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1
\end{array}\]
The above pascal’s triangle is given till 5th power.
Since we have $n = 5$, and from the above triangle we can see that the fifth order term is $1,5,10,10,5,1$.
For this we have the formula, ${(a + b)^5} = 1{a^5}{b^0} + 5{a^4}{b^1} + 10{a^3}{b^2} + 10{a^2}{b^3} + 5{x^1}{b^4} + 1{a^0}{b^5}$.
By applying the above formula we can write ${(x + 2y)^5} = 1{(x)^5}{(2y)^0} + 5{(x)^4}{(2y)^1} + 10{(x)^3}{(2y)^2} + 10{(x)^2}{(2y)^3} + 5{(x)^1}{(2y)^4} + 1{(x)^0}{(2y)^5}$.
On multiplying
It gives us the expression: ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
Hence the required value is ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
So, the correct answer is “${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$”.
Note: We should note that pascal’s triangle is helpful only when the value of $n$ is small in the equation ${(a + b)^n}$. If the value is large then it is very tedious to draw the triangle until we reach $n$. The formula that we used above because the question has the positive sign i.e. sum of the values.
Complete step-by-step answer:
As we know that the main application of this triangle is to solve a binomial function. If the binomial equation is ${(a + b)^n}$, then the expansion is ${C_1}{a^n}{b^0} + {C_2}{a^{n - 1}}{b^1} + ... + {C_n}{a^0}{b^n}$.
The above equation represents the binomial expansion formula.
But here we are not going to solve this question by the binomial expansion.
Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. Pascal's triangle contains the values of the binomial coefficient.
The pascal’s triangle is given by
\[\begin{array}{*{20}{c}}
{{{(x + y)}^0} = } \\
{{{(x + y)}^1} = } \\
{{{(x + y)}^2} = } \\
{{{(x + y)}^3} = } \\
{{{(x + y)}^4} = } \\
{{{(x + y)}^5} = }
\end{array}\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&1&{}&{}&{}&{}&{} \\
{}&{}&{}&{}&1&{}&1&{}&{}&{}&{} \\
{}&{}&{}&1&{}&2&{}&1&{}&{}&{} \\
{}&{}&1&{}&3&{}&3&{}&1&{}&{} \\
{}&1&{}&4&{}&6&{}&4&{}&1&{} \\
1&{}&5&{}&{10}&{}&{10}&{}&5&{}&1
\end{array}\]
The above pascal’s triangle is given till 5th power.
Since we have $n = 5$, and from the above triangle we can see that the fifth order term is $1,5,10,10,5,1$.
For this we have the formula, ${(a + b)^5} = 1{a^5}{b^0} + 5{a^4}{b^1} + 10{a^3}{b^2} + 10{a^2}{b^3} + 5{x^1}{b^4} + 1{a^0}{b^5}$.
By applying the above formula we can write ${(x + 2y)^5} = 1{(x)^5}{(2y)^0} + 5{(x)^4}{(2y)^1} + 10{(x)^3}{(2y)^2} + 10{(x)^2}{(2y)^3} + 5{(x)^1}{(2y)^4} + 1{(x)^0}{(2y)^5}$.
On multiplying
It gives us the expression: ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
Hence the required value is ${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$.
So, the correct answer is “${x^5} + 10{x^4}{y^{}} + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}$”.
Note: We should note that pascal’s triangle is helpful only when the value of $n$ is small in the equation ${(a + b)^n}$. If the value is large then it is very tedious to draw the triangle until we reach $n$. The formula that we used above because the question has the positive sign i.e. sum of the values.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE