
How do you use the fundamental identities to simplify $ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} $ ?
Answer
560.4k+ views
Hint: The identity that we will use in this question is that the sum of the squares of sine function and cosine function is equal to one, and the other identity used states that the difference of the squares of the cosecant and cotangent function is one. Using these identities we can simplify the fraction, and then we will convert all the trigonometric ratios in the form of the sine and cosine functions. The trigonometric terms are now simplified, now we will simplify the fraction by canceling out the common terms present in the numerator and the denominator.
Complete step-by-step answer:
In this question, we are given
Complete step by step answer:
We are given $ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} $
We know that,
$
{\sin ^2}x + {\cos ^2}x = 1 \\
\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \;
$
And
$
{\csc ^2}x - {\cot ^2}x = 1 \\
\Rightarrow {\csc ^2}x - 1 = {\cot ^2}x \;
$
Using the above two values in the given expression, we get –
$ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{{{\cos }^2}x}}{{{{\cot }^2}x}} $
Now, $ \cot x = \dfrac{{\cos x}}{{\sin x}} $
So,
$
\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{{{\cos }^2}x}}{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}} = {\cos ^2}x \times \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = {\sin ^2}x \;
$
Hence, the simplified form of $ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} $ is $ {\sin ^2}x $
So, the correct answer is “ $ {\sin ^2}x $ ”.
Note: We can solve this question by one more method as shown below –
We know that $ \csc x = \dfrac{1}{{\sin x}} $
Using this value in the above equation, we get –
$ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{1 - {{\sin }^2}x}}{{\dfrac{1}{{{{\sin }^2}x}} - 1}} = \dfrac{{1 - {{\sin }^2}x}}{{\dfrac{{1 - {{\sin }^2}x}}{{{{\sin }^2}x}}}} = 1 - {\sin ^2}x \times \dfrac{{{{\sin }^2}x}}{{1 - {{\sin }^2}x}} $
Now the term $ 1 - {\sin ^2}x $ is common in both the numerator and the denominator, so we cancel it out as follows –
$ \Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = {\sin ^2}x $
Complete step-by-step answer:
In this question, we are given
Complete step by step answer:
We are given $ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} $
We know that,
$
{\sin ^2}x + {\cos ^2}x = 1 \\
\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \;
$
And
$
{\csc ^2}x - {\cot ^2}x = 1 \\
\Rightarrow {\csc ^2}x - 1 = {\cot ^2}x \;
$
Using the above two values in the given expression, we get –
$ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{{{\cos }^2}x}}{{{{\cot }^2}x}} $
Now, $ \cot x = \dfrac{{\cos x}}{{\sin x}} $
So,
$
\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{{{\cos }^2}x}}{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}} = {\cos ^2}x \times \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = {\sin ^2}x \;
$
Hence, the simplified form of $ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} $ is $ {\sin ^2}x $
So, the correct answer is “ $ {\sin ^2}x $ ”.
Note: We can solve this question by one more method as shown below –
We know that $ \csc x = \dfrac{1}{{\sin x}} $
Using this value in the above equation, we get –
$ \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{1 - {{\sin }^2}x}}{{\dfrac{1}{{{{\sin }^2}x}} - 1}} = \dfrac{{1 - {{\sin }^2}x}}{{\dfrac{{1 - {{\sin }^2}x}}{{{{\sin }^2}x}}}} = 1 - {\sin ^2}x \times \dfrac{{{{\sin }^2}x}}{{1 - {{\sin }^2}x}} $
Now the term $ 1 - {\sin ^2}x $ is common in both the numerator and the denominator, so we cancel it out as follows –
$ \Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = {\sin ^2}x $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

