Answer
Verified
430.5k+ views
Hint: In order to solve this question, we need to use the half angle formula to find the respective values of the trigonometric functions. We find the value of $x$ by equating $\dfrac{x}{2}$ with $\dfrac{\pi }{{12}}$. We place this value in the half angle formula and solve it further to get our required answers.
Formula used: ${\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{2}$,${\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2}$,${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Complete Step by Step Solution:
In this question, we are asked to find the values of the trigonometric functions sine, cosine and tangent for the angle $\dfrac{\pi }{{12}}$ using the half angle formula.
All values less than $\dfrac{\pi }{2}$ fall in the first quadrant of a trigonometry unit circle.
As all the trigonometric functions are positive in the first quadrant hence the trigonometric functions for the angle $\dfrac{\pi }{{12}}$ will also be positive as it falls in the first quadrant.
The half angle formula for sine is given as:
$ \Rightarrow {\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{2}$
Angle $\dfrac{x}{2}$ here corresponds to $\dfrac{\pi }{{12}}$
Therefore, $\dfrac{x}{2} = \dfrac{\pi }{{12}}$
$ \Rightarrow x = \dfrac{\pi }{{12}} \times 2 = \dfrac{\pi }{6}$
Placing this value of $x$ in the formula, we get:
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \cos \left( {\dfrac{\pi }{6}} \right)}}{2}$
On simplifying it further, we get:
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \cos {{30}^ \circ }}}{2}$
As we know that the value of $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Therefore, ${\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{2}$
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2}}}{2} = \dfrac{{2 - \sqrt 3 }}{2} \times \dfrac{1}{2}$
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{4}$
Let us take square root of both sides:
$ \Rightarrow \sin \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 - \sqrt 3 }}{4}} $
$ \Rightarrow \sin \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{2}\sqrt {2 - \sqrt 3 } $
Let us find the value for cosine:
The half angle formula for cosine is given as ${\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2}$
Similarly, here also $x = \dfrac{\pi }{6}$
Therefore, ${\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \cos \left( {\dfrac{\pi }{6}} \right)}}{2}$
On simplifying it further, we get:
$ \Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \cos {{30}^ \circ }}}{2}$
As we know that the value of $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Therefore, ${\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}$
$ \Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 + \sqrt 3 }}{2}}}{2} = \dfrac{{2 + \sqrt 3 }}{2} \times \dfrac{1}{2}$
$ \Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{4}$
Let us take square root of both sides:
$ \Rightarrow \cos \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 + \sqrt 3 }}{4}} $
$ \Rightarrow \cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{2}\sqrt {2 + \sqrt 3 } $
Let us find the half-angle value for tangent:
The half – angle formula for tangent is given as: ${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Now as we already know that $x = \dfrac{\pi }{6}$
Therefore, ${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos \left( {\dfrac{\pi }{6}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{6}} \right)}}$
$ \Rightarrow {\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos {{30}^ \circ }}}{{1 + \cos {{30}^ \circ }}}$
As we know that the value of $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Therefore, ${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{{1 + \dfrac{{\sqrt 3 }}{2}}}$
On simplifying it further, we get:
$ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2}}}{{\dfrac{{2 + \sqrt 3 }}{2}}}$
$ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{2} \times \dfrac{2}{{2 + \sqrt 3 }}$
$ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}$
Taking square root on both sides of the equation, we get:
$ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} $
Thus $\sqrt {\dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} $ is the required answer.
Note: Trigonometry is a branch of mathematics which deals with triangles. There are many trigonometric formulas that establish a relation between the lengths and angles of respective triangles. In trigonometry, we use a right-angled triangle to find ratios of its different sides and angles such as sine, cosine, tan, and their respective inverse like cosec, sec, and cot.
We may even consider a complete circle and divide it into four quadrants to help us understand our trigonometric identities as so:
When the whole turn around the circle is equal to $2\pi $, while a half circle is equal to $\pi $ . The different quadrants are divided into different angles. All trigonometric identities have positive signs in the first quadrant, while sine has positive values in the second quadrant. Tan has positive values in the third quadrant and cosine has positive values in the fourth quadrant.
Formula used: ${\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{2}$,${\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2}$,${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Complete Step by Step Solution:
In this question, we are asked to find the values of the trigonometric functions sine, cosine and tangent for the angle $\dfrac{\pi }{{12}}$ using the half angle formula.
All values less than $\dfrac{\pi }{2}$ fall in the first quadrant of a trigonometry unit circle.
As all the trigonometric functions are positive in the first quadrant hence the trigonometric functions for the angle $\dfrac{\pi }{{12}}$ will also be positive as it falls in the first quadrant.
The half angle formula for sine is given as:
$ \Rightarrow {\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{2}$
Angle $\dfrac{x}{2}$ here corresponds to $\dfrac{\pi }{{12}}$
Therefore, $\dfrac{x}{2} = \dfrac{\pi }{{12}}$
$ \Rightarrow x = \dfrac{\pi }{{12}} \times 2 = \dfrac{\pi }{6}$
Placing this value of $x$ in the formula, we get:
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \cos \left( {\dfrac{\pi }{6}} \right)}}{2}$
On simplifying it further, we get:
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \cos {{30}^ \circ }}}{2}$
As we know that the value of $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Therefore, ${\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{2}$
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2}}}{2} = \dfrac{{2 - \sqrt 3 }}{2} \times \dfrac{1}{2}$
$ \Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{4}$
Let us take square root of both sides:
$ \Rightarrow \sin \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 - \sqrt 3 }}{4}} $
$ \Rightarrow \sin \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{2}\sqrt {2 - \sqrt 3 } $
Let us find the value for cosine:
The half angle formula for cosine is given as ${\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2}$
Similarly, here also $x = \dfrac{\pi }{6}$
Therefore, ${\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \cos \left( {\dfrac{\pi }{6}} \right)}}{2}$
On simplifying it further, we get:
$ \Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \cos {{30}^ \circ }}}{2}$
As we know that the value of $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Therefore, ${\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}$
$ \Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 + \sqrt 3 }}{2}}}{2} = \dfrac{{2 + \sqrt 3 }}{2} \times \dfrac{1}{2}$
$ \Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{4}$
Let us take square root of both sides:
$ \Rightarrow \cos \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 + \sqrt 3 }}{4}} $
$ \Rightarrow \cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{2}\sqrt {2 + \sqrt 3 } $
Let us find the half-angle value for tangent:
The half – angle formula for tangent is given as: ${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Now as we already know that $x = \dfrac{\pi }{6}$
Therefore, ${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos \left( {\dfrac{\pi }{6}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{6}} \right)}}$
$ \Rightarrow {\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos {{30}^ \circ }}}{{1 + \cos {{30}^ \circ }}}$
As we know that the value of $\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
Therefore, ${\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{{1 + \dfrac{{\sqrt 3 }}{2}}}$
On simplifying it further, we get:
$ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2}}}{{\dfrac{{2 + \sqrt 3 }}{2}}}$
$ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{2} \times \dfrac{2}{{2 + \sqrt 3 }}$
$ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}$
Taking square root on both sides of the equation, we get:
$ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} $
Thus $\sqrt {\dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} $ is the required answer.
Note: Trigonometry is a branch of mathematics which deals with triangles. There are many trigonometric formulas that establish a relation between the lengths and angles of respective triangles. In trigonometry, we use a right-angled triangle to find ratios of its different sides and angles such as sine, cosine, tan, and their respective inverse like cosec, sec, and cot.
We may even consider a complete circle and divide it into four quadrants to help us understand our trigonometric identities as so:
When the whole turn around the circle is equal to $2\pi $, while a half circle is equal to $\pi $ . The different quadrants are divided into different angles. All trigonometric identities have positive signs in the first quadrant, while sine has positive values in the second quadrant. Tan has positive values in the third quadrant and cosine has positive values in the fourth quadrant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE