Answer
Verified
430.2k+ views
Hint: We can solve this question by drawing the graph of $\dfrac{1}{2x+1}$ . We can prove some series is divergent if some less value than the series is divergent. We can prove some series convergent if some greater value than the series is convergent.
Complete step by step answer:
In the series $\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......$ we can see the denominators are 3,5,7….
We can write the series $\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......=\sum\limits_{n=1}^{\infty }{\dfrac{1}{2n+1}}$
Let’s the graph of $\dfrac{1}{2x+1}$
Lets mark the area under the curve when $1\le x<\infty $
The region with deep blue color is our required area we can calculate the area by integrating
$\dfrac{1}{2x+1}$
From 1 to infinity
So the area under the curve =$\int\limits_{1}^{\infty }{\dfrac{1}{2x+1}dx}$
$=\left[ \dfrac{1}{2}\ln \left( 2x+1 \right) \right]_{1}^{\infty }$
We know that logarithm is tend to infinity when x tends to infinity
So the area under the curve tends to infinity.
Now let’s look at the series given in the question $\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......$
If can write the series as
$\dfrac{1}{3}\times 1+\dfrac{1}{5}\times 1+\dfrac{1}{7}\times 1..........$
We represent the series in as area in a Cartesian plane and compare with above area under the curve
All the rectangle represents the area
$\dfrac{1}{3}\times 1+\dfrac{1}{5}\times 1+\dfrac{1}{7}\times 1..........$
We can clearly see the sum of the area of all rectangles is greater than the area under the curve from 1 to infinity.
If the area under the curve tends to infinity then the area of all rectangles will automatically tend to infinity.
So the sum of the series
$\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......$
Will tend to infinity. So the series is divergent.
Note:
If nth term of a series is a nonzero number when n tends to infinity then the series is definitely divergent but the reverse is not true that means if nth term tends to 0 when n tends to infinity that does not mean the series will be convergent like we have seen in the above example. In the above series the nth term tends to 0 when n tends to infinity but the series
Is divergent.
Complete step by step answer:
In the series $\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......$ we can see the denominators are 3,5,7….
We can write the series $\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......=\sum\limits_{n=1}^{\infty }{\dfrac{1}{2n+1}}$
Let’s the graph of $\dfrac{1}{2x+1}$
Lets mark the area under the curve when $1\le x<\infty $
The region with deep blue color is our required area we can calculate the area by integrating
$\dfrac{1}{2x+1}$
From 1 to infinity
So the area under the curve =$\int\limits_{1}^{\infty }{\dfrac{1}{2x+1}dx}$
$=\left[ \dfrac{1}{2}\ln \left( 2x+1 \right) \right]_{1}^{\infty }$
We know that logarithm is tend to infinity when x tends to infinity
So the area under the curve tends to infinity.
Now let’s look at the series given in the question $\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......$
If can write the series as
$\dfrac{1}{3}\times 1+\dfrac{1}{5}\times 1+\dfrac{1}{7}\times 1..........$
We represent the series in as area in a Cartesian plane and compare with above area under the curve
All the rectangle represents the area
$\dfrac{1}{3}\times 1+\dfrac{1}{5}\times 1+\dfrac{1}{7}\times 1..........$
We can clearly see the sum of the area of all rectangles is greater than the area under the curve from 1 to infinity.
If the area under the curve tends to infinity then the area of all rectangles will automatically tend to infinity.
So the sum of the series
$\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{11}.......$
Will tend to infinity. So the series is divergent.
Note:
If nth term of a series is a nonzero number when n tends to infinity then the series is definitely divergent but the reverse is not true that means if nth term tends to 0 when n tends to infinity that does not mean the series will be convergent like we have seen in the above example. In the above series the nth term tends to 0 when n tends to infinity but the series
Is divergent.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers