How to use zero factor property in reverse?
Answer
Verified
446.1k+ views
Hint: Zero factor property is defined as:
Consider the equation $a \times b = 0$ that is the product of two unknown numbers is $0$. Then we can find the unknown values by $a = 0$ or $b = 0$.
We can use this reverse of the property to determine the polynomial function. From the zeros of the polynomial we can find the factors. Multiply the factors and equate to zero that gives the polynomial.
Complete step-by-step answer:
Zero factor property is defined as: Consider the equation $a \times b = 0$ that is the product of two unknown numbers is $0$, where $a$ and $b$ are the factor of the equation. Then we can find the unknown values by $a = 0$ or $b = 0$.
Reverse of the zero property is that, if $a$ and $b$ are the zeros then $x - a$ and $x - b$ are the factors of the equation. Multiplying the factors and equating them to zero will give the polynomial.
$ \Rightarrow$$(x - a)(x - b) = 0$
$ \Rightarrow {x^2} - bx - ax + ab = 0$
$ \Rightarrow {x^2} - (a + b)x + ab = 0$
Here, we took two zeros therefore the polynomial is the quadratic equation.
This will give us the polynomial.
For example, suppose we have the zeros: -2, 3, and 1.
That means,
$ \Rightarrow$$x = - 2$
$ \Rightarrow x + 2 = 0 \ldots (1)$
$ \Rightarrow$$x = 3$
$ \Rightarrow x - 3 = 0 \ldots (2)$
$ \Rightarrow$$x = 1$
$ \Rightarrow x - 1 = 0 \ldots (3)$
Multiply the factors given in the equation $(1),(2)$ and $(3)$.
$ \Rightarrow$$(x + 2)(x - 3)(x - 1) = 0$
$ \Rightarrow ({x^2} - x - 6)(x - 1) = 0$
$ \Rightarrow ({x^3} - {x^2} - 6x - {x^2} + x + 6) = 0$
$ \Rightarrow {x^3} - 2{x^2} - 5x + 6 = 0$
We can find the equation (polynomial) by using zero factor property in reverse.
Note:
The common mistake students can do in this problem is the sign of the roots. So make sure you do the individual steps to avoid this mistake.
Consider the equation $a \times b = 0$ that is the product of two unknown numbers is $0$. Then we can find the unknown values by $a = 0$ or $b = 0$.
We can use this reverse of the property to determine the polynomial function. From the zeros of the polynomial we can find the factors. Multiply the factors and equate to zero that gives the polynomial.
Complete step-by-step answer:
Zero factor property is defined as: Consider the equation $a \times b = 0$ that is the product of two unknown numbers is $0$, where $a$ and $b$ are the factor of the equation. Then we can find the unknown values by $a = 0$ or $b = 0$.
Reverse of the zero property is that, if $a$ and $b$ are the zeros then $x - a$ and $x - b$ are the factors of the equation. Multiplying the factors and equating them to zero will give the polynomial.
$ \Rightarrow$$(x - a)(x - b) = 0$
$ \Rightarrow {x^2} - bx - ax + ab = 0$
$ \Rightarrow {x^2} - (a + b)x + ab = 0$
Here, we took two zeros therefore the polynomial is the quadratic equation.
This will give us the polynomial.
For example, suppose we have the zeros: -2, 3, and 1.
That means,
$ \Rightarrow$$x = - 2$
$ \Rightarrow x + 2 = 0 \ldots (1)$
$ \Rightarrow$$x = 3$
$ \Rightarrow x - 3 = 0 \ldots (2)$
$ \Rightarrow$$x = 1$
$ \Rightarrow x - 1 = 0 \ldots (3)$
Multiply the factors given in the equation $(1),(2)$ and $(3)$.
$ \Rightarrow$$(x + 2)(x - 3)(x - 1) = 0$
$ \Rightarrow ({x^2} - x - 6)(x - 1) = 0$
$ \Rightarrow ({x^3} - {x^2} - 6x - {x^2} + x + 6) = 0$
$ \Rightarrow {x^3} - 2{x^2} - 5x + 6 = 0$
We can find the equation (polynomial) by using zero factor property in reverse.
Note:
The common mistake students can do in this problem is the sign of the roots. So make sure you do the individual steps to avoid this mistake.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE