Answer
Verified
397.5k+ views
Hint: In order to find if \[2q-1\] is a factor \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] using long division method, we must perform division process by considering the dividend as \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] and the divisor as \[2q-1\]. After performing the division, if we obtain the remainder as zero, then we can conclude that the second polynomial is the factor of the first polynomial.
Complete step-by-step solution:
Now let us learn about the process of long division upon the polynomials.
1.We have to divide the first term of numerator by the first term of denominator i.e. divisor and the obtained answer should be placed in the place of quotient.
2.Now we should multiply the next term of the divisor with the first term written in the quotient and write the obtained answer in the second term’s place of the dividend.
3.Next, we have to subtract the polynomials and write the difference between them.
4. We have to follow the same process again and again until we obtain the remainder zero or the polynomial such that the degree of the divisor is greater than the degree of the remainder.
Now let us perform the long division upon the given polynomials.
\[\begin{align}
& \text{2q-1}\overset{\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-
3}}{\overline{\left){\text{4}{{\text{q}}^{\text{3}}}\text{-6}{{\text{q}}^{\text{2}}}\text{-4q+3}}\right.}}
\\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{3}}}\text{-2}{{\text{q}}^{\text{2}}} \downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\text{ -4}{{\text{q}}^{\text{2}}}\text{- 4q} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{2}}}\text{+2q}\downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ -6q+3} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -6q+3}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\
\end{align}\]
We can see that we have obtained the remainder as\[0\], so we can conclude that \[2q-1\] is a factor of \[4{{q}^{3}}-6{{q}^{2}}-4q+3\].
Note: We can check that if we have obtained the answer correctly or not by using the Euclid division algorithm i.e. \[\text{a=bq+r}\].
From the question, we have
\[\begin{align}
& \text{a=}4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
& b=2q-1 \\
& q=\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \\
& r=0 \\
\end{align}\]
Upon substituting these values, let us check if we obtain the same polynomials on both the sides.
\[\begin{align}
& \Rightarrow \text{a=bq+r} \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=\left( 2q-1 \right)\left( \text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \right)+0 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-4{{q}^{2}}-6q-2{{q}^{2}}+2q+3 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
\end{align}\]
We can see that we have obtained the same polynomials on both sides of the equation.
Hence proved.
Complete step-by-step solution:
Now let us learn about the process of long division upon the polynomials.
1.We have to divide the first term of numerator by the first term of denominator i.e. divisor and the obtained answer should be placed in the place of quotient.
2.Now we should multiply the next term of the divisor with the first term written in the quotient and write the obtained answer in the second term’s place of the dividend.
3.Next, we have to subtract the polynomials and write the difference between them.
4. We have to follow the same process again and again until we obtain the remainder zero or the polynomial such that the degree of the divisor is greater than the degree of the remainder.
Now let us perform the long division upon the given polynomials.
\[\begin{align}
& \text{2q-1}\overset{\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-
3}}{\overline{\left){\text{4}{{\text{q}}^{\text{3}}}\text{-6}{{\text{q}}^{\text{2}}}\text{-4q+3}}\right.}}
\\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{3}}}\text{-2}{{\text{q}}^{\text{2}}} \downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\text{ -4}{{\text{q}}^{\text{2}}}\text{- 4q} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{2}}}\text{+2q}\downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ -6q+3} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -6q+3}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\
\end{align}\]
We can see that we have obtained the remainder as\[0\], so we can conclude that \[2q-1\] is a factor of \[4{{q}^{3}}-6{{q}^{2}}-4q+3\].
Note: We can check that if we have obtained the answer correctly or not by using the Euclid division algorithm i.e. \[\text{a=bq+r}\].
From the question, we have
\[\begin{align}
& \text{a=}4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
& b=2q-1 \\
& q=\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \\
& r=0 \\
\end{align}\]
Upon substituting these values, let us check if we obtain the same polynomials on both the sides.
\[\begin{align}
& \Rightarrow \text{a=bq+r} \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=\left( 2q-1 \right)\left( \text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \right)+0 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-4{{q}^{2}}-6q-2{{q}^{2}}+2q+3 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
\end{align}\]
We can see that we have obtained the same polynomials on both sides of the equation.
Hence proved.
Recently Updated Pages
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE