Answer
Verified
463.5k+ views
Hint: Here, we will draw an angle ABC of \[72^\circ \] with the help of a protractor. Then with a center B and any radius, we will draw an arc, which intersect AB at D and BC at E and center D and E and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and then draw two arcs which intersect each other at F. Then we will Join FB, which intersect the arc at G. So with centers D and G and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and we will draw two arcs which intersect each other at F. Now with centers D and G and radius more than \[\dfrac{{{\text{DG}}}}{2}\] draw two arcs, which intersect each other at H and we will join HB to find the required angles.
Complete step-by-step answer:
First, we will draw an angle ABC of \[72^\circ \] with the help of a protractor.
Then with a center B and any radius, we will draw an arc, which intersects AB at D and BC at E.
With center D and E and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and then draw two arcs which intersect each other at F.
Then we will Join FB, which intersects the arc at G.
So with centers D and G and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and we will draw two arcs which intersect each other at F.
Now with centers D and G and radius more than \[\dfrac{{{\text{DG}}}}{2}\] draw two arcs which intersect each other at H.
Joining HB, we get
Therefore this implies that \[\angle HBC = 54^\circ \] and \[\angle FBC = 36^\circ \].
Note: The crucial part of this problem is to use the compass properly. One needs to know the basic rules and way of using a compass. We will verify our angle by using the protractor and putting it on the line BC with B as a center. This is a simple problem, we have to be careful with the labeling of the arcs as well.
Complete step-by-step answer:
First, we will draw an angle ABC of \[72^\circ \] with the help of a protractor.
Then with a center B and any radius, we will draw an arc, which intersects AB at D and BC at E.
With center D and E and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and then draw two arcs which intersect each other at F.
Then we will Join FB, which intersects the arc at G.
So with centers D and G and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and we will draw two arcs which intersect each other at F.
Now with centers D and G and radius more than \[\dfrac{{{\text{DG}}}}{2}\] draw two arcs which intersect each other at H.
Joining HB, we get
Therefore this implies that \[\angle HBC = 54^\circ \] and \[\angle FBC = 36^\circ \].
Note: The crucial part of this problem is to use the compass properly. One needs to know the basic rules and way of using a compass. We will verify our angle by using the protractor and putting it on the line BC with B as a center. This is a simple problem, we have to be careful with the labeling of the arcs as well.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Find the square of 45 class 7 maths CBSE
You are the head boyhead girl Write a notice informing class 7 english CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
What are the major means of transport Explain each class 12 social science CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE