Using Binomial theorem, evaluate ${\left( {99} \right)^5}$.
Answer
Verified
506.7k+ views
Hint- Here, a special case of binomial theorem will be used.
Since, we have to find the value for ${\left( {99} \right)^5}$ which can be written as \[{\left( {100 - 1} \right)^5}\].
According to Binomial theorem, we know that
\[{\left( {x - 1} \right)^n} = {}^n{C_0}{x^n}{1^0} - {}^n{C_1}{x^{n - 1}}{1^1} + {}^n{C_2}{x^{n - 2}}{1^2} - ..... + {\left( { - 1} \right)^{n - 1}}{}^n{C_{n - 1}}{x^1}{1^{n - 1}} + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{1^n}\]
where \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] and \[{}^n{C_0} = 1,{}^n{C_1} = n,{}^n{C_{n - 1}} = n,{}^n{C_n} = 1\]
\[ \Rightarrow {\left( {x - 1} \right)^n} = {x^n} - n{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - ..... + {\left( { - 1} \right)^{n - 1}}nx + {\left( { - 1} \right)^n}\]
In the above equation, put \[x = 100\] and \[n = 5\]
\[ \Rightarrow {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} = {100^5} - 5 \times {\left( {100} \right)^4} + {}^5{C_2}{\left( {100} \right)^3} - {}^5{C_3}{\left( {100} \right)^2} + 5 \times 100 - 1{\text{ }} \to {\text{(1)}}\]
Now, \[{}^5{C_2} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} = \dfrac{{5!}}{{2!3!}} = \dfrac{{5 \times 4}}{2} = 10\] and \[{}^5{C_3} = \dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} = \dfrac{{5!}}{{3!2!}} = \dfrac{{5 \times 4}}{2} = 10\]
Therefore, equation (1) becomes
\[
\Rightarrow {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} = {10^{10}} - 5 \times {10^8} + 10 \times {10^6} - 10 \times {10^4} + 500 - 1 \\
\Rightarrow {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} = {10^{10}} - 5 \times {10^8} + {10^7} - {10^5} + 500 - 1 = 9509900499 \\
\]
Hence, \[{\left( {99} \right)^5} = 9509900499\].
Note- These types of problems are solved by somehow converting the expression which needs to be evaluated into some form so that the binomial theorem or its special case are useful to obtain the answer.
Since, we have to find the value for ${\left( {99} \right)^5}$ which can be written as \[{\left( {100 - 1} \right)^5}\].
According to Binomial theorem, we know that
\[{\left( {x - 1} \right)^n} = {}^n{C_0}{x^n}{1^0} - {}^n{C_1}{x^{n - 1}}{1^1} + {}^n{C_2}{x^{n - 2}}{1^2} - ..... + {\left( { - 1} \right)^{n - 1}}{}^n{C_{n - 1}}{x^1}{1^{n - 1}} + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{1^n}\]
where \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] and \[{}^n{C_0} = 1,{}^n{C_1} = n,{}^n{C_{n - 1}} = n,{}^n{C_n} = 1\]
\[ \Rightarrow {\left( {x - 1} \right)^n} = {x^n} - n{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} - ..... + {\left( { - 1} \right)^{n - 1}}nx + {\left( { - 1} \right)^n}\]
In the above equation, put \[x = 100\] and \[n = 5\]
\[ \Rightarrow {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} = {100^5} - 5 \times {\left( {100} \right)^4} + {}^5{C_2}{\left( {100} \right)^3} - {}^5{C_3}{\left( {100} \right)^2} + 5 \times 100 - 1{\text{ }} \to {\text{(1)}}\]
Now, \[{}^5{C_2} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} = \dfrac{{5!}}{{2!3!}} = \dfrac{{5 \times 4}}{2} = 10\] and \[{}^5{C_3} = \dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} = \dfrac{{5!}}{{3!2!}} = \dfrac{{5 \times 4}}{2} = 10\]
Therefore, equation (1) becomes
\[
\Rightarrow {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} = {10^{10}} - 5 \times {10^8} + 10 \times {10^6} - 10 \times {10^4} + 500 - 1 \\
\Rightarrow {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} = {10^{10}} - 5 \times {10^8} + {10^7} - {10^5} + 500 - 1 = 9509900499 \\
\]
Hence, \[{\left( {99} \right)^5} = 9509900499\].
Note- These types of problems are solved by somehow converting the expression which needs to be evaluated into some form so that the binomial theorem or its special case are useful to obtain the answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE