Using binomial theorem, find the value of
\[(i)\,\,{{(102)}^{4}}\]
\[(ii)\,\,{{(1.1)}^{5}}\]
Answer
Verified
466.5k+ views
Hint: We are going to use the binomial theorem to expand the given values. After expanding the terms, we will get the required answer.
Formula used:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
Complete step by step answer:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(100+2)}^{4}}{{=}^{4}}{{C}_{0}}{{(100)}^{4}}{{+}^{4}}{{C}_{1}}{{(100)}^{41}}(2){{+}^{4}}{{C}_{2}}\]\[{{(100)}^{42}}{{(2)}^{2}}{{+}^{4}}{{C}_{3}}{{(100)}^{43}}{{(2)}^{3}}\]+\[^{4}{{C}_{4}}{{(2)}^{4}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,\,\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
0 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 0}{{(100)}^{4}}+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 1}\times {{(100)}^{3}}2\]+\[\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 2}{{(100)}^{2}}\times 4+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 3}(100)\times 8+16\]
Simplify the expression
\[\Rightarrow \,\,\,{{(100)}^{4}}+\dfrac{4\times \left| \!{\underline {\,
3 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
3 \,}} \right. }\,\,\,100\times 8+16\]
Rewrite the equation after simplification
\[=\,\,\,100000000+8000000+240000+3200+16\]
\[=108243216\]
\[(ii)\,\,\,{{(1+0.1)}^{5}}\]
Use the formula of the binomial theorem
\[{{(x+a)}^{n}}=\,{{\,}^{n}}{{C}_{0}}{{x}^{n}}a{{+}^{n}}{{C}_{1}}{{x}^{n1}}a{{+}^{n}}{{C}_{2}}{{x}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(1+0.1)}^{5}}{{=}^{5}}{{C}_{0}}{{(1)}^{5}}{{+}^{5}}{{C}_{1}}{{(1)}^{51}}(0.1){{+}^{5}}{{C}_{2}}{{(1)}^{51}}{{(0.1)}^{2}}\]+\[^{5}{{C}_{3}}{{(1)}^{53}}{{(0.1)}^{3}}{{+}^{5}}{{C}_{4}}{{(1)}^{54}}{{(0.1)}^{4}}{{(100)}^{2}}\times 4{{+}^{5}}{{C}_{5}}{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \,\times \left| \!{\underline {\,
3 \,}} \right. }{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
2 \,}} \right. }\times {{(0.1)}^{3}}\]+ \[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times 1\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{1\times 2\times 3}{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{\left| \!{\underline {\,
3 \,}} \right. \times 2\times 1}\times (0.1)\]+\[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,1+0.5+10\times {{(0.1)}^{2}}+10\times {{(0.1)}^{3}}+5{{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Use the concept of the addition
\[\Rightarrow \,\,1+0.5+0.1+0.01+0.0005+0.00001\]
\[\Rightarrow \,\,1.61051\]
Note:
\[(i)\]These types of problems are always solved by the binomial theorem.
\[(ii)\]When the concept of the binomial theorem is used, then we always use the factorial method.
Formula used:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
Complete step by step answer:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(100+2)}^{4}}{{=}^{4}}{{C}_{0}}{{(100)}^{4}}{{+}^{4}}{{C}_{1}}{{(100)}^{41}}(2){{+}^{4}}{{C}_{2}}\]\[{{(100)}^{42}}{{(2)}^{2}}{{+}^{4}}{{C}_{3}}{{(100)}^{43}}{{(2)}^{3}}\]+\[^{4}{{C}_{4}}{{(2)}^{4}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,\,\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
0 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 0}{{(100)}^{4}}+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 1}\times {{(100)}^{3}}2\]+\[\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 2}{{(100)}^{2}}\times 4+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 3}(100)\times 8+16\]
Simplify the expression
\[\Rightarrow \,\,\,{{(100)}^{4}}+\dfrac{4\times \left| \!{\underline {\,
3 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
3 \,}} \right. }\,\,\,100\times 8+16\]
Rewrite the equation after simplification
\[=\,\,\,100000000+8000000+240000+3200+16\]
\[=108243216\]
\[(ii)\,\,\,{{(1+0.1)}^{5}}\]
Use the formula of the binomial theorem
\[{{(x+a)}^{n}}=\,{{\,}^{n}}{{C}_{0}}{{x}^{n}}a{{+}^{n}}{{C}_{1}}{{x}^{n1}}a{{+}^{n}}{{C}_{2}}{{x}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(1+0.1)}^{5}}{{=}^{5}}{{C}_{0}}{{(1)}^{5}}{{+}^{5}}{{C}_{1}}{{(1)}^{51}}(0.1){{+}^{5}}{{C}_{2}}{{(1)}^{51}}{{(0.1)}^{2}}\]+\[^{5}{{C}_{3}}{{(1)}^{53}}{{(0.1)}^{3}}{{+}^{5}}{{C}_{4}}{{(1)}^{54}}{{(0.1)}^{4}}{{(100)}^{2}}\times 4{{+}^{5}}{{C}_{5}}{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \,\times \left| \!{\underline {\,
3 \,}} \right. }{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
2 \,}} \right. }\times {{(0.1)}^{3}}\]+ \[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times 1\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{1\times 2\times 3}{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{\left| \!{\underline {\,
3 \,}} \right. \times 2\times 1}\times (0.1)\]+\[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,1+0.5+10\times {{(0.1)}^{2}}+10\times {{(0.1)}^{3}}+5{{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Use the concept of the addition
\[\Rightarrow \,\,1+0.5+0.1+0.01+0.0005+0.00001\]
\[\Rightarrow \,\,1.61051\]
Note:
\[(i)\]These types of problems are always solved by the binomial theorem.
\[(ii)\]When the concept of the binomial theorem is used, then we always use the factorial method.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE