Answer
Verified
498.6k+ views
Hint: The differentiation of \[x\] is represented by \[dx\] is defined by \[dx = x\] where \[x\] is the minor change in \[x\]. The differential of \[y\] is represented by \[dy\] is defined by \[dy = \dfrac{{dy}}{{dx}}x\]. As \[x\] is very small compared to \[x\], so \[dy\] is the approximation of \[y\]. Hence the increment in \[y\] corresponding to the increment in \[x\], denoted by \[\Delta y\], is given by \[\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\].
Complete step-by-step answer:
Let \[y = \sqrt x \] where \[x = 49\& \Delta x = 0.5\]
Since \[y = \sqrt x \]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]
Now,
\[
\Delta y = \dfrac{{dy}}{{dx}}\Delta x \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt x }}\left( {0.5} \right) \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt {49} }} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{2 \times 7}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{14}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{{0.5}}{{14}} \\
\therefore \Delta y = 0.036 \\
\]
Also,
\[\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\]
By substituting the above values, we have
\[
\Delta y = \sqrt {x + \Delta x} - \sqrt x {\text{ }}\left[ {\because f\left( x \right) = y = \sqrt x } \right]{\text{ }} \\
0.036 = \sqrt {49 + 0.5} - \sqrt {49} \\
{\text{0}}{\text{.036}} = \sqrt {49.5} - 7 \\
\sqrt {49.5} = 0.036 + 7 \\
\therefore \sqrt {49.5} = 7.036{\text{ }} \\
\]
Thus, the approximate value of \[\sqrt {49.5} \] is 7.036
Note: In this problem we have solved the approximation up to 3 places of decimals. And also, we have rounded off the decimal numbers up to three places. We use differentiation to find the approximate values of the certain quantities.
Complete step-by-step answer:
Let \[y = \sqrt x \] where \[x = 49\& \Delta x = 0.5\]
Since \[y = \sqrt x \]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]
Now,
\[
\Delta y = \dfrac{{dy}}{{dx}}\Delta x \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt x }}\left( {0.5} \right) \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt {49} }} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{2 \times 7}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{14}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{{0.5}}{{14}} \\
\therefore \Delta y = 0.036 \\
\]
Also,
\[\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\]
By substituting the above values, we have
\[
\Delta y = \sqrt {x + \Delta x} - \sqrt x {\text{ }}\left[ {\because f\left( x \right) = y = \sqrt x } \right]{\text{ }} \\
0.036 = \sqrt {49 + 0.5} - \sqrt {49} \\
{\text{0}}{\text{.036}} = \sqrt {49.5} - 7 \\
\sqrt {49.5} = 0.036 + 7 \\
\therefore \sqrt {49.5} = 7.036{\text{ }} \\
\]
Thus, the approximate value of \[\sqrt {49.5} \] is 7.036
Note: In this problem we have solved the approximation up to 3 places of decimals. And also, we have rounded off the decimal numbers up to three places. We use differentiation to find the approximate values of the certain quantities.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE