Answer
Verified
453k+ views
Hint: As a convention, for voltage sources, when moving from negative to positive add voltage when moving from positive to negative subtract voltage. For resistors, when moving in the same direction as conventional current, subtract voltage across the resistor but when moving in the opposite direction add voltage across the resistor.
Formula used: $\sum V = 0$ where $V$ is the voltage around a loop, $\sum {{I_{in}} = \sum {{I_{out}}} } $ where ${I_{in}}$ is the current flowing into a node and ${I_{out}}$ is the current flowing out of the node.
Complete step by step answer
To solve, let us apply Kirchhoff’s voltage rule around the loop BAFEB, we have
$\Rightarrow 9 - {I_2}(1) - {I_1}(1) - {I_2} - 6 = 0 $
$\Rightarrow 9 - 6 = 2{I_1} + {I_2} = 3$
Since ${I_2} = 0$, then
$\Rightarrow {I_1} = \dfrac{3}{2} $
$\Rightarrow 1.5A $
At node E,
$\Rightarrow {I_1} = {I_2} + {I_3} $
$\Rightarrow {I_1} = {I_3} $
Since ${I_2} = 0$, using the Kirchhoff’s voltage law on loop BAFDCB we get
$\Rightarrow 9 - {I_1} - {I_1} - {I_1}R - 3 = 0 $
$\Rightarrow 6 - 2{I_1} = {I_1}R $
Making $R$ subject of the formula and inserting the values for ${I_1}$ we have
$\Rightarrow R = \dfrac{{6 - 2\left( {1.5} \right)}}{{1.5}} $
$\Rightarrow \dfrac{3}{{1.5}} $
$\Rightarrow 2\Omega $
The voltage between A and D is simply the voltage remained if we apply Kirchhoff’s law around a loop DCAFD but stop at point A. i.e.
$\Rightarrow {V_{DA}} = - {I_1}R - 3 + 9 = - {I_1}R + 6$
Inputting values of ${I_1}$ and $R$ again and solving, we get
$\Rightarrow {V_{DA}} = - 1.5\left( 2 \right) + 6 $
$\Rightarrow - 3 + 6 $
$\Rightarrow {V_{DA}} = 3V$
Hence, the required answer is 3V.
Additional Information
Kirchhoff’s rule is a physical principle which is more fundamental than Ohm’s law as it was derived from the principle of conservation of charge. In fact, it works with other elements besides resistors such as capacitors and inductors. It can also be used to analyze low frequency ac current.
Note
Alternatively, to find ${V_{DA}}$ we can take the path DFA instead of the path DCA as done above. Thus, we have,
$\Rightarrow {V_{DA}} = {I_1} + {I_1} = 2{I_1}$
The voltage difference across the $1\Omega $ resistors because we move in the direction opposite to the assumed conventional flow.
Substituting the value of ${I_1}$ in the above equation we get,
$\Rightarrow {V_{DA}} = 2\left( {1.5} \right) = 3V$
$\therefore {V_{DA}} = 3V$
Formula used: $\sum V = 0$ where $V$ is the voltage around a loop, $\sum {{I_{in}} = \sum {{I_{out}}} } $ where ${I_{in}}$ is the current flowing into a node and ${I_{out}}$ is the current flowing out of the node.
Complete step by step answer
To solve, let us apply Kirchhoff’s voltage rule around the loop BAFEB, we have
$\Rightarrow 9 - {I_2}(1) - {I_1}(1) - {I_2} - 6 = 0 $
$\Rightarrow 9 - 6 = 2{I_1} + {I_2} = 3$
Since ${I_2} = 0$, then
$\Rightarrow {I_1} = \dfrac{3}{2} $
$\Rightarrow 1.5A $
At node E,
$\Rightarrow {I_1} = {I_2} + {I_3} $
$\Rightarrow {I_1} = {I_3} $
Since ${I_2} = 0$, using the Kirchhoff’s voltage law on loop BAFDCB we get
$\Rightarrow 9 - {I_1} - {I_1} - {I_1}R - 3 = 0 $
$\Rightarrow 6 - 2{I_1} = {I_1}R $
Making $R$ subject of the formula and inserting the values for ${I_1}$ we have
$\Rightarrow R = \dfrac{{6 - 2\left( {1.5} \right)}}{{1.5}} $
$\Rightarrow \dfrac{3}{{1.5}} $
$\Rightarrow 2\Omega $
The voltage between A and D is simply the voltage remained if we apply Kirchhoff’s law around a loop DCAFD but stop at point A. i.e.
$\Rightarrow {V_{DA}} = - {I_1}R - 3 + 9 = - {I_1}R + 6$
Inputting values of ${I_1}$ and $R$ again and solving, we get
$\Rightarrow {V_{DA}} = - 1.5\left( 2 \right) + 6 $
$\Rightarrow - 3 + 6 $
$\Rightarrow {V_{DA}} = 3V$
Hence, the required answer is 3V.
Additional Information
Kirchhoff’s rule is a physical principle which is more fundamental than Ohm’s law as it was derived from the principle of conservation of charge. In fact, it works with other elements besides resistors such as capacitors and inductors. It can also be used to analyze low frequency ac current.
Note
Alternatively, to find ${V_{DA}}$ we can take the path DFA instead of the path DCA as done above. Thus, we have,
$\Rightarrow {V_{DA}} = {I_1} + {I_1} = 2{I_1}$
The voltage difference across the $1\Omega $ resistors because we move in the direction opposite to the assumed conventional flow.
Substituting the value of ${I_1}$ in the above equation we get,
$\Rightarrow {V_{DA}} = 2\left( {1.5} \right) = 3V$
$\therefore {V_{DA}} = 3V$
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE