Answer
Verified
496.8k+ views
Hint – Observing the equation given in the question we consider a polynomial function, and check its properties. Then we check if our polynomial function holds the conditions of Rolle’s Theorem to determine the answer.
Complete step-by-step answer:
Given data, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Consider the function f defined by
f(x) = ${{\text{a}}_0}\dfrac{{{{\text{x}}^{{\text{n + 1}}}}}}{{{\text{n + 1}}}} + {{\text{a}}_{\text{n}}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{\text{n}}} + ....... + {{\text{a}}_{{\text{n - 1}}}}\dfrac{{{{\text{x}}^2}}}{2} + {{\text{a}}_{\text{n}}}{\text{x}}$
Since f(x) is a polynomial, it is continuous and differentiable for all x.
f(x) is continuous in the closed interval [0, 1] and differentiable in the open interval (0, 1).
Also f(0) = 0.
And let us say,
f(1) = $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$
i.e. f(0) = f(1)
Thus, all three conditions of Rolle’s Theorem are satisfied. Hence there is at least one value of x in the open interval (0, 1) where ${\text{f'}}$(x) = 0.
i.e. ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Hence, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$ has one root between 0 and 1 if $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$.
Option D is the correct answer.
Note – In order to solve this type of questions the key is to assume a polynomial function and verify if it holds all the required conditions.
The Three Conditions of Rolle’s Theorem, for a function f(x) are,
(a and b are the first and last of the values x takes)
f is continuous on the closed interval [a, b], f is differentiable on the open interval (a, b) and f(a) = f(b).
Complete step-by-step answer:
Given data, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Consider the function f defined by
f(x) = ${{\text{a}}_0}\dfrac{{{{\text{x}}^{{\text{n + 1}}}}}}{{{\text{n + 1}}}} + {{\text{a}}_{\text{n}}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{\text{n}}} + ....... + {{\text{a}}_{{\text{n - 1}}}}\dfrac{{{{\text{x}}^2}}}{2} + {{\text{a}}_{\text{n}}}{\text{x}}$
Since f(x) is a polynomial, it is continuous and differentiable for all x.
f(x) is continuous in the closed interval [0, 1] and differentiable in the open interval (0, 1).
Also f(0) = 0.
And let us say,
f(1) = $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$
i.e. f(0) = f(1)
Thus, all three conditions of Rolle’s Theorem are satisfied. Hence there is at least one value of x in the open interval (0, 1) where ${\text{f'}}$(x) = 0.
i.e. ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Hence, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$ has one root between 0 and 1 if $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$.
Option D is the correct answer.
Note – In order to solve this type of questions the key is to assume a polynomial function and verify if it holds all the required conditions.
The Three Conditions of Rolle’s Theorem, for a function f(x) are,
(a and b are the first and last of the values x takes)
f is continuous on the closed interval [a, b], f is differentiable on the open interval (a, b) and f(a) = f(b).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE