Answer
Verified
500.7k+ views
Hint- This question can be solved by knowing that ${135^ \circ } = {90^ \circ } + {45^ \circ }$ .
We have to draw an angle of the measure ${135^ \circ }$.
Steps of construction: -
$\left( 1 \right)$ Draw a line segment $AB$ and produce $BA$ to point $C.$
$\left( 2 \right)$ With centre $A$ and any radius draw an arc which intersects$AC$ at $D$ and $AB$ at $E$ .
$\left( 3 \right)$ With centres $D$ and $E$ and radius more than $\frac{1}{2}DE$ ,draw two arcs which intersect each other at $F$ .
$\left( 4 \right)$ Join $FA$ which intersects the arc in $\left( 2 \right)$ at $G$ .
$\left( 5 \right)$ With centres $G$ and $D$ and radius more than $\frac{1}{2}GD$ ,draw two arcs which intersect each other at $H$ .
$\left( 6 \right)$ Join $HA$.
$\therefore \angle HAB = {135^ \circ }$
Note- Whenever we face such types of questions the key concept is that we should construct a straight angle and then draw its perpendicular bisector as we did and then we get, ${90^ \circ } + {90^ \circ }$ but, we need${90^ \circ } + {45^ \circ }$ i.e. ${135^ \circ }$ so, we draw the angle bisector of one right angle and we get $\angle HAB = {135^ \circ }$ .
We have to draw an angle of the measure ${135^ \circ }$.
Steps of construction: -
$\left( 1 \right)$ Draw a line segment $AB$ and produce $BA$ to point $C.$
$\left( 2 \right)$ With centre $A$ and any radius draw an arc which intersects$AC$ at $D$ and $AB$ at $E$ .
$\left( 3 \right)$ With centres $D$ and $E$ and radius more than $\frac{1}{2}DE$ ,draw two arcs which intersect each other at $F$ .
$\left( 4 \right)$ Join $FA$ which intersects the arc in $\left( 2 \right)$ at $G$ .
$\left( 5 \right)$ With centres $G$ and $D$ and radius more than $\frac{1}{2}GD$ ,draw two arcs which intersect each other at $H$ .
$\left( 6 \right)$ Join $HA$.
$\therefore \angle HAB = {135^ \circ }$
Note- Whenever we face such types of questions the key concept is that we should construct a straight angle and then draw its perpendicular bisector as we did and then we get, ${90^ \circ } + {90^ \circ }$ but, we need${90^ \circ } + {45^ \circ }$ i.e. ${135^ \circ }$ so, we draw the angle bisector of one right angle and we get $\angle HAB = {135^ \circ }$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE