Answer
Verified
429k+ views
Hint: The coordinate of the points A, B, and C are \[\left( 1,1,2 \right)\] , \[\left( 2,3,5 \right)\] , and \[\left( 1,5,5 \right)\] . Convert the points A, B, and C in vector form by adding \[\widehat{i}\] , \[\widehat{j}\] , and \[\widehat{k}\] in x, y, and z coordinates. Now, use the formula that if we have three vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] , and \[\overrightarrow{C}\] . Then, the area of \[\Delta ABC\] is given by the half of the vector product of \[\left( \overrightarrow{A}-\overrightarrow{C} \right)\] and \[\left( \overrightarrow{B}-\overrightarrow{C} \right)\] i.e., The area of \[\Delta ABC\] = \[\dfrac{1}{2}\left[ ~\left( \overrightarrow{A}-\overrightarrow{C} \right)\times \left( \overrightarrow{B}-\overrightarrow{C} \right) \right]\] and calculate the area of the triangle. At last calculate its magnitude.
Complete step by step answer:
According to the question, we are given the coordinates of three points of the triangle and we are asked to find the area of the triangle using vector form.
The coordinate of point A = \[\left( 1,1,2 \right)\] ………………………………….(1)
The coordinate of point B = \[\left( 2,3,5 \right)\] ……………………………………..(2)
The coordinate of point C = \[\left( 1,5,5 \right)\] ………………………………………..(3)
Now, converting the above points into position vectors by adding \[\widehat{i}\] , \[\widehat{j}\] , and \[\widehat{k}\] in x, y, and z coordinates.
The position vector of A = \[\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)\] …………………………………..(4)
The position vector of B = \[\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)\] …………………………………..(5)
The position vector of C = \[\left( 1\widehat{i}+5+5\widehat{k} \right)\] …………………………………..(6)
We know the formula that if we have three vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] , and \[\overrightarrow{C}\] . Then, the area of \[\Delta ABC\] is given by the half of the vector product of \[\left( \overrightarrow{A}-\overrightarrow{C} \right)\] and \[\left( \overrightarrow{B}-\overrightarrow{C} \right)\] i.e.,
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\left[ ~\left( \overrightarrow{A}-\overrightarrow{C} \right)\times \left( \overrightarrow{B}-\overrightarrow{C} \right) \right]\] ………………………………..(7)
From equation (4), and equation (6), we get
\[\left( \overrightarrow{A}-\overrightarrow{C} \right)=\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 1-1 \right)i+\left( 1-5 \right)+\left( 2-5 \right)k=-4\widehat{j}-3\widehat{k}\] ………………………………………….(8)
Similarly, from equation (2), and equation (3), we get
\[\left( \overrightarrow{B}-\overrightarrow{C} \right)=\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 2-1 \right)i+\left( 3-5 \right)j+\left( 5-5 \right)k=1i-2j\] ………………………………………….(9)
Now, from equation (7), equation (8), and equation (9), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ \left( -4\widehat{j}-3\widehat{k} \right)\times \left( 1\widehat{i}-2\widehat{j} \right) \right]\] ……………………………………….(10)
We know the property that \[\widehat{i}\times \widehat{i}=0\] , \[\widehat{j}\times \widehat{j}=0\] , \[\widehat{k}\times \widehat{k}=0\] , \[\widehat{i}\times \widehat{j}=\widehat{k}\] , \[\widehat{i}\times \widehat{k}=-\widehat{j}\] , \[\widehat{j}\times \widehat{i}=-\widehat{k}\] ,
\[\widehat{j}\times \widehat{k}=\widehat{i}\] , \[\widehat{k}\times \widehat{i}=\widehat{j}\] , and \[\widehat{k}\times \widehat{j}=\widehat{-i}\] ……………………………………..(11)
Now, using equation (11) and on simplifying equation (10), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ -6\widehat{i}-3\widehat{j}+4\widehat{k} \right]\] = \[-3\widehat{i}-\dfrac{3}{2}\widehat{j}+2\widehat{k}\] ……………………………………….(12)
We know the formula for the magnitude of a vector \[xi+yj+zk\] , Magnitude = \[\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\] …………………………………………………(13)
Now, from equation (12) and equation (13), we get
The area of \[\Delta ABC\] = \[\sqrt{{{\left( -3 \right)}^{2}}+{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9+\dfrac{9}{4}+4}=\sqrt{\dfrac{36+9+16}{4}}=\dfrac{\sqrt{61}}{2}\] sq units.
Therefore, the area of the triangle is \[\dfrac{\sqrt{61}}{2}\] sq units.
Note:
We can also solve this question by calculating position vector form of the sides AB and AC. Now, use the formula, that the area of the triangle whose position vector of two sides are \[{{x}_{1}}\widehat{i}+{{y}_{1}}\widehat{j}+{{z}_{1}}\widehat{k}\] and \[{{x}_{2}}\widehat{i}+{{y}_{2}}\widehat{j}+{{z}_{2}}\widehat{k}\] is given by \[\dfrac{1}{2}\times \left| \begin{align}
& \begin{matrix}
\widehat{i} & \,\,\,\widehat{j} & \widehat{\,k} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \\
\end{align} \right|\] .
Complete step by step answer:
According to the question, we are given the coordinates of three points of the triangle and we are asked to find the area of the triangle using vector form.
The coordinate of point A = \[\left( 1,1,2 \right)\] ………………………………….(1)
The coordinate of point B = \[\left( 2,3,5 \right)\] ……………………………………..(2)
The coordinate of point C = \[\left( 1,5,5 \right)\] ………………………………………..(3)
Now, converting the above points into position vectors by adding \[\widehat{i}\] , \[\widehat{j}\] , and \[\widehat{k}\] in x, y, and z coordinates.
The position vector of A = \[\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)\] …………………………………..(4)
The position vector of B = \[\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)\] …………………………………..(5)
The position vector of C = \[\left( 1\widehat{i}+5+5\widehat{k} \right)\] …………………………………..(6)
We know the formula that if we have three vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] , and \[\overrightarrow{C}\] . Then, the area of \[\Delta ABC\] is given by the half of the vector product of \[\left( \overrightarrow{A}-\overrightarrow{C} \right)\] and \[\left( \overrightarrow{B}-\overrightarrow{C} \right)\] i.e.,
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\left[ ~\left( \overrightarrow{A}-\overrightarrow{C} \right)\times \left( \overrightarrow{B}-\overrightarrow{C} \right) \right]\] ………………………………..(7)
From equation (4), and equation (6), we get
\[\left( \overrightarrow{A}-\overrightarrow{C} \right)=\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 1-1 \right)i+\left( 1-5 \right)+\left( 2-5 \right)k=-4\widehat{j}-3\widehat{k}\] ………………………………………….(8)
Similarly, from equation (2), and equation (3), we get
\[\left( \overrightarrow{B}-\overrightarrow{C} \right)=\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 2-1 \right)i+\left( 3-5 \right)j+\left( 5-5 \right)k=1i-2j\] ………………………………………….(9)
Now, from equation (7), equation (8), and equation (9), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ \left( -4\widehat{j}-3\widehat{k} \right)\times \left( 1\widehat{i}-2\widehat{j} \right) \right]\] ……………………………………….(10)
We know the property that \[\widehat{i}\times \widehat{i}=0\] , \[\widehat{j}\times \widehat{j}=0\] , \[\widehat{k}\times \widehat{k}=0\] , \[\widehat{i}\times \widehat{j}=\widehat{k}\] , \[\widehat{i}\times \widehat{k}=-\widehat{j}\] , \[\widehat{j}\times \widehat{i}=-\widehat{k}\] ,
\[\widehat{j}\times \widehat{k}=\widehat{i}\] , \[\widehat{k}\times \widehat{i}=\widehat{j}\] , and \[\widehat{k}\times \widehat{j}=\widehat{-i}\] ……………………………………..(11)
Now, using equation (11) and on simplifying equation (10), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ -6\widehat{i}-3\widehat{j}+4\widehat{k} \right]\] = \[-3\widehat{i}-\dfrac{3}{2}\widehat{j}+2\widehat{k}\] ……………………………………….(12)
We know the formula for the magnitude of a vector \[xi+yj+zk\] , Magnitude = \[\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\] …………………………………………………(13)
Now, from equation (12) and equation (13), we get
The area of \[\Delta ABC\] = \[\sqrt{{{\left( -3 \right)}^{2}}+{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9+\dfrac{9}{4}+4}=\sqrt{\dfrac{36+9+16}{4}}=\dfrac{\sqrt{61}}{2}\] sq units.
Therefore, the area of the triangle is \[\dfrac{\sqrt{61}}{2}\] sq units.
Note:
We can also solve this question by calculating position vector form of the sides AB and AC. Now, use the formula, that the area of the triangle whose position vector of two sides are \[{{x}_{1}}\widehat{i}+{{y}_{1}}\widehat{j}+{{z}_{1}}\widehat{k}\] and \[{{x}_{2}}\widehat{i}+{{y}_{2}}\widehat{j}+{{z}_{2}}\widehat{k}\] is given by \[\dfrac{1}{2}\times \left| \begin{align}
& \begin{matrix}
\widehat{i} & \,\,\,\widehat{j} & \widehat{\,k} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \\
\end{align} \right|\] .
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE