Answer
Verified
437.4k+ views
Hint: The coordinate of the points A, B, and C are \[\left( 1,1,2 \right)\] , \[\left( 2,3,5 \right)\] , and \[\left( 1,5,5 \right)\] . Convert the points A, B, and C in vector form by adding \[\widehat{i}\] , \[\widehat{j}\] , and \[\widehat{k}\] in x, y, and z coordinates. Now, use the formula that if we have three vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] , and \[\overrightarrow{C}\] . Then, the area of \[\Delta ABC\] is given by the half of the vector product of \[\left( \overrightarrow{A}-\overrightarrow{C} \right)\] and \[\left( \overrightarrow{B}-\overrightarrow{C} \right)\] i.e., The area of \[\Delta ABC\] = \[\dfrac{1}{2}\left[ ~\left( \overrightarrow{A}-\overrightarrow{C} \right)\times \left( \overrightarrow{B}-\overrightarrow{C} \right) \right]\] and calculate the area of the triangle. At last calculate its magnitude.
Complete step by step answer:
According to the question, we are given the coordinates of three points of the triangle and we are asked to find the area of the triangle using vector form.
The coordinate of point A = \[\left( 1,1,2 \right)\] ………………………………….(1)
The coordinate of point B = \[\left( 2,3,5 \right)\] ……………………………………..(2)
The coordinate of point C = \[\left( 1,5,5 \right)\] ………………………………………..(3)
Now, converting the above points into position vectors by adding \[\widehat{i}\] , \[\widehat{j}\] , and \[\widehat{k}\] in x, y, and z coordinates.
The position vector of A = \[\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)\] …………………………………..(4)
The position vector of B = \[\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)\] …………………………………..(5)
The position vector of C = \[\left( 1\widehat{i}+5+5\widehat{k} \right)\] …………………………………..(6)
We know the formula that if we have three vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] , and \[\overrightarrow{C}\] . Then, the area of \[\Delta ABC\] is given by the half of the vector product of \[\left( \overrightarrow{A}-\overrightarrow{C} \right)\] and \[\left( \overrightarrow{B}-\overrightarrow{C} \right)\] i.e.,
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\left[ ~\left( \overrightarrow{A}-\overrightarrow{C} \right)\times \left( \overrightarrow{B}-\overrightarrow{C} \right) \right]\] ………………………………..(7)
From equation (4), and equation (6), we get
\[\left( \overrightarrow{A}-\overrightarrow{C} \right)=\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 1-1 \right)i+\left( 1-5 \right)+\left( 2-5 \right)k=-4\widehat{j}-3\widehat{k}\] ………………………………………….(8)
Similarly, from equation (2), and equation (3), we get
\[\left( \overrightarrow{B}-\overrightarrow{C} \right)=\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 2-1 \right)i+\left( 3-5 \right)j+\left( 5-5 \right)k=1i-2j\] ………………………………………….(9)
Now, from equation (7), equation (8), and equation (9), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ \left( -4\widehat{j}-3\widehat{k} \right)\times \left( 1\widehat{i}-2\widehat{j} \right) \right]\] ……………………………………….(10)
We know the property that \[\widehat{i}\times \widehat{i}=0\] , \[\widehat{j}\times \widehat{j}=0\] , \[\widehat{k}\times \widehat{k}=0\] , \[\widehat{i}\times \widehat{j}=\widehat{k}\] , \[\widehat{i}\times \widehat{k}=-\widehat{j}\] , \[\widehat{j}\times \widehat{i}=-\widehat{k}\] ,
\[\widehat{j}\times \widehat{k}=\widehat{i}\] , \[\widehat{k}\times \widehat{i}=\widehat{j}\] , and \[\widehat{k}\times \widehat{j}=\widehat{-i}\] ……………………………………..(11)
Now, using equation (11) and on simplifying equation (10), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ -6\widehat{i}-3\widehat{j}+4\widehat{k} \right]\] = \[-3\widehat{i}-\dfrac{3}{2}\widehat{j}+2\widehat{k}\] ……………………………………….(12)
We know the formula for the magnitude of a vector \[xi+yj+zk\] , Magnitude = \[\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\] …………………………………………………(13)
Now, from equation (12) and equation (13), we get
The area of \[\Delta ABC\] = \[\sqrt{{{\left( -3 \right)}^{2}}+{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9+\dfrac{9}{4}+4}=\sqrt{\dfrac{36+9+16}{4}}=\dfrac{\sqrt{61}}{2}\] sq units.
Therefore, the area of the triangle is \[\dfrac{\sqrt{61}}{2}\] sq units.
Note:
We can also solve this question by calculating position vector form of the sides AB and AC. Now, use the formula, that the area of the triangle whose position vector of two sides are \[{{x}_{1}}\widehat{i}+{{y}_{1}}\widehat{j}+{{z}_{1}}\widehat{k}\] and \[{{x}_{2}}\widehat{i}+{{y}_{2}}\widehat{j}+{{z}_{2}}\widehat{k}\] is given by \[\dfrac{1}{2}\times \left| \begin{align}
& \begin{matrix}
\widehat{i} & \,\,\,\widehat{j} & \widehat{\,k} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \\
\end{align} \right|\] .
Complete step by step answer:
According to the question, we are given the coordinates of three points of the triangle and we are asked to find the area of the triangle using vector form.
The coordinate of point A = \[\left( 1,1,2 \right)\] ………………………………….(1)
The coordinate of point B = \[\left( 2,3,5 \right)\] ……………………………………..(2)
The coordinate of point C = \[\left( 1,5,5 \right)\] ………………………………………..(3)
Now, converting the above points into position vectors by adding \[\widehat{i}\] , \[\widehat{j}\] , and \[\widehat{k}\] in x, y, and z coordinates.
The position vector of A = \[\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)\] …………………………………..(4)
The position vector of B = \[\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)\] …………………………………..(5)
The position vector of C = \[\left( 1\widehat{i}+5+5\widehat{k} \right)\] …………………………………..(6)
We know the formula that if we have three vectors \[\overrightarrow{A}\] , \[\overrightarrow{B}\] , and \[\overrightarrow{C}\] . Then, the area of \[\Delta ABC\] is given by the half of the vector product of \[\left( \overrightarrow{A}-\overrightarrow{C} \right)\] and \[\left( \overrightarrow{B}-\overrightarrow{C} \right)\] i.e.,
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\left[ ~\left( \overrightarrow{A}-\overrightarrow{C} \right)\times \left( \overrightarrow{B}-\overrightarrow{C} \right) \right]\] ………………………………..(7)
From equation (4), and equation (6), we get
\[\left( \overrightarrow{A}-\overrightarrow{C} \right)=\left( 1\widehat{i}+1\widehat{j}+2\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 1-1 \right)i+\left( 1-5 \right)+\left( 2-5 \right)k=-4\widehat{j}-3\widehat{k}\] ………………………………………….(8)
Similarly, from equation (2), and equation (3), we get
\[\left( \overrightarrow{B}-\overrightarrow{C} \right)=\left( 2\widehat{i}+3\widehat{j}+5\widehat{k} \right)-\left( 1\widehat{i}+5\widehat{j}+5\widehat{k} \right)=\left( 2-1 \right)i+\left( 3-5 \right)j+\left( 5-5 \right)k=1i-2j\] ………………………………………….(9)
Now, from equation (7), equation (8), and equation (9), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ \left( -4\widehat{j}-3\widehat{k} \right)\times \left( 1\widehat{i}-2\widehat{j} \right) \right]\] ……………………………………….(10)
We know the property that \[\widehat{i}\times \widehat{i}=0\] , \[\widehat{j}\times \widehat{j}=0\] , \[\widehat{k}\times \widehat{k}=0\] , \[\widehat{i}\times \widehat{j}=\widehat{k}\] , \[\widehat{i}\times \widehat{k}=-\widehat{j}\] , \[\widehat{j}\times \widehat{i}=-\widehat{k}\] ,
\[\widehat{j}\times \widehat{k}=\widehat{i}\] , \[\widehat{k}\times \widehat{i}=\widehat{j}\] , and \[\widehat{k}\times \widehat{j}=\widehat{-i}\] ……………………………………..(11)
Now, using equation (11) and on simplifying equation (10), we get
The area of \[\Delta ABC\] = \[\dfrac{1}{2}\times \left[ -6\widehat{i}-3\widehat{j}+4\widehat{k} \right]\] = \[-3\widehat{i}-\dfrac{3}{2}\widehat{j}+2\widehat{k}\] ……………………………………….(12)
We know the formula for the magnitude of a vector \[xi+yj+zk\] , Magnitude = \[\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\] …………………………………………………(13)
Now, from equation (12) and equation (13), we get
The area of \[\Delta ABC\] = \[\sqrt{{{\left( -3 \right)}^{2}}+{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9+\dfrac{9}{4}+4}=\sqrt{\dfrac{36+9+16}{4}}=\dfrac{\sqrt{61}}{2}\] sq units.
Therefore, the area of the triangle is \[\dfrac{\sqrt{61}}{2}\] sq units.
Note:
We can also solve this question by calculating position vector form of the sides AB and AC. Now, use the formula, that the area of the triangle whose position vector of two sides are \[{{x}_{1}}\widehat{i}+{{y}_{1}}\widehat{j}+{{z}_{1}}\widehat{k}\] and \[{{x}_{2}}\widehat{i}+{{y}_{2}}\widehat{j}+{{z}_{2}}\widehat{k}\] is given by \[\dfrac{1}{2}\times \left| \begin{align}
& \begin{matrix}
\widehat{i} & \,\,\,\widehat{j} & \widehat{\,k} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
\end{matrix} \\
& \begin{matrix}
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
\end{matrix} \\
\end{align} \right|\] .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE