Answer
Verified
400.5k+ views
Hint: Gravity is the force which pulls the objects down towards the ground and acceleration produced by this force is called the acceleration due to gravity.Gravitational acceleration is a quantity of vector, that is it has both magnitude and direction.
Complete step by step answer:
Acceleration due to gravity at the surface of earth is approximately \[9.8\,m/{{s}^{2}}\]. It is not the same everywhere. It keeps on decreasing as we go above the surface of earth.
As we go below the surface of earth, the variation in g(acceleration due to gravity) is given by:
\[g'=g\left( 1-\dfrac{h}{{{R}_{e}}} \right)\]
where,
\[g'=\] Actual acceleration due to gravity at a depth ‘h’ from the surface of earth
\[g=\] Acceleration due to gravity at the surface of earth \[=9.8m/{{s}^{2}}\]
\[h=\] Distance from the surface of the earth
\[\operatorname{R_e}=\] Radius of the earth
Now, at the centre of earth, \[h=\operatorname{Re}\]
\[g'=g\left( 1-\dfrac{{{R}_{e}}}{{{R}_{e}}} \right)\]
\[\therefore g'=0\]
Therefore, acceleration due to gravity at the centre of the earth is \[0\] and it keeps on increasing till we reach at the surface of the earth and after that it keeps on decreasing.
Note: Logically, we can understand this by, when we move inside the earth, the mass that exerts gravitational force on us decreases and hence at the centre of the earth the acceleration due to gravity becomes zero. Variation of g as we go above the surface of the earth is given by \[g'=\dfrac{g}{{{\left( 1+\dfrac{h}{{{R}_{e}}} \right)}^{2}}}\].
Complete step by step answer:
Acceleration due to gravity at the surface of earth is approximately \[9.8\,m/{{s}^{2}}\]. It is not the same everywhere. It keeps on decreasing as we go above the surface of earth.
As we go below the surface of earth, the variation in g(acceleration due to gravity) is given by:
\[g'=g\left( 1-\dfrac{h}{{{R}_{e}}} \right)\]
where,
\[g'=\] Actual acceleration due to gravity at a depth ‘h’ from the surface of earth
\[g=\] Acceleration due to gravity at the surface of earth \[=9.8m/{{s}^{2}}\]
\[h=\] Distance from the surface of the earth
\[\operatorname{R_e}=\] Radius of the earth
Now, at the centre of earth, \[h=\operatorname{Re}\]
\[g'=g\left( 1-\dfrac{{{R}_{e}}}{{{R}_{e}}} \right)\]
\[\therefore g'=0\]
Therefore, acceleration due to gravity at the centre of the earth is \[0\] and it keeps on increasing till we reach at the surface of the earth and after that it keeps on decreasing.
Note: Logically, we can understand this by, when we move inside the earth, the mass that exerts gravitational force on us decreases and hence at the centre of the earth the acceleration due to gravity becomes zero. Variation of g as we go above the surface of the earth is given by \[g'=\dfrac{g}{{{\left( 1+\dfrac{h}{{{R}_{e}}} \right)}^{2}}}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE