Value of g on the surface of earth is $ 9.8{ m }/{ { s }^{ 2 } }$. At height h=R from the surface the value of g is $ \dfrac { g }{ x }$. Find x.
Answer
Verified
475.8k+ views
Hint: Write the formula for acceleration due to gravity on the surface and acceleration due to gravity at height h. And then divide the equations. Arrange the equation in such a way that you get acceleration due to gravity at height h in terms of acceleration due to gravity on the surface.
Formula used:
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
Complete answer:
Acceleration due to gravity on the surface is given by,
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$ …(1)
where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Acceleration due to gravity at height h is given by,
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$...(2)
Dividing equation. (2) by equation. (1) we get,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
At h= R,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad R \right) }^{ 2 } }$
$ \Rightarrow \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( 2R \right) }^{ 2 } }$
$ \Rightarrow \cfrac { { g }^{ ' } }{ g } =\quad \cfrac { 1 }{ 4 }$
$ \Rightarrow { g }^{ ' }=\quad \cfrac { g }{ 4 }$
Therefore, the value of x is 4.
Note:
Acceleration due to gravity g is inversely proportional to radius R and eventually height h. This means as the height increases, acceleration due to gravity decreases. Thus, acceleration due to gravity is smaller at height as compared to that on the surface.
Formula used:
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
Complete answer:
Acceleration due to gravity on the surface is given by,
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$ …(1)
where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Acceleration due to gravity at height h is given by,
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$...(2)
Dividing equation. (2) by equation. (1) we get,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
At h= R,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad R \right) }^{ 2 } }$
$ \Rightarrow \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( 2R \right) }^{ 2 } }$
$ \Rightarrow \cfrac { { g }^{ ' } }{ g } =\quad \cfrac { 1 }{ 4 }$
$ \Rightarrow { g }^{ ' }=\quad \cfrac { g }{ 4 }$
Therefore, the value of x is 4.
Note:
Acceleration due to gravity g is inversely proportional to radius R and eventually height h. This means as the height increases, acceleration due to gravity decreases. Thus, acceleration due to gravity is smaller at height as compared to that on the surface.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE