
What is the value of the integral $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$ ?
(A) $ - \left( {\dfrac{{{e^{ - x}}}}{{{e^x} + {e^{ - x}}}}} \right) + c$
(B) $ - \left( {{e^{2x}} + 1} \right) + c$
(C) ${\left( {\dfrac{1}{{{e^x} + 1}}} \right)^2} + c$
(D) ${\left( {\dfrac{1}{{{e^x} + {e^{ - x}}}}} \right)^2} + c$
Answer
454.8k+ views
Hint: The given question requires us to integrate a function of x with respect to x. We evaluate the given integral using the substitution method. We substitute the exponential function as t and then follow the substitution method of integration. After getting the answer in the terms of t, we substitute back t in terms of x.
Complete step by step answer:
The given question requires us to find the value of the indefinite integral $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$.
So, we have, $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$
But, it is very difficult to integrate the function directly. So, we can assign a new variable to the exponential function ${e^x}$.
So, let \[t = {e^x} - - - - - \left( 1 \right)\].
Then, differentiating both sides of the equation, we get,
$ \Rightarrow dt = {e^x}dx - - - - - \left( 2 \right)$
So, the integral $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$ can be simplified by substituting the value of $\left( {dx} \right)$ in terms of $\left( {dt} \right)$ as obtained above. So, we get,
$\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} \left( {\dfrac{{dt}}{{{e^x}}}} \right)$
Substituting ${e^x}$ as t, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{2}{{{{\left( {t + \dfrac{1}{t}} \right)}^2}}}} \left( {\dfrac{{dt}}{t}} \right)$
Evaluating the whole square using the algebraic identity ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$. So, we have,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{2}{{\left( {{t^2} + \dfrac{1}{{{t^2}}} + 2} \right)}}} \left( {\dfrac{{dt}}{t}} \right)$
Opening the brackets, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2dt}}{{\left( {{t^3} + \dfrac{1}{t} + 2t} \right)}}} $
Taking LCM in the numerator, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2dt}}{{\left( {\dfrac{{{t^4} + 1 + 2{t^2}}}{t}} \right)}}} $
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2tdt}}{{\left( {{t^4} + 1 + 2{t^2}} \right)}}} $
Now, condensing the denominator using algebraic identity ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2tdt}}{{{{\left( {{t^2} + 1} \right)}^2}}}} $
Now, we again substitute $u = \left( {{t^2} + 1} \right)$.
Differentiating both sides, we get,
$du = 2tdt$
So, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2tdt}}{{{{\left( {{t^2} + 1} \right)}^2}}}} = \int {\dfrac{{du}}{{{u^2}}}} $
Now, we know the power rule of integration as $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$. So, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {{u^{ - 2}}du} $
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}} + c$
Simplifying further, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - u + c$
Now, we have the final answer. We just need to substitute u in terms of t and then in terms of x.
So, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - \left( {{t^2} + 1} \right) + c$
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - \left( {{{\left( {{e^x}} \right)}^2} + 1} \right) + c$
Simplifying further, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - \left( {{e^{2x}} + 1} \right) + c$, where c is any arbitrary constant.
Therefore, option (B) is the correct answer.
Note:
The indefinite integrals of certain functions may have more than one answer in different forms. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant. It is extremely important to substitute back the value of the assumed variable, once we have reached the final stage.
Complete step by step answer:
The given question requires us to find the value of the indefinite integral $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$.
So, we have, $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$
But, it is very difficult to integrate the function directly. So, we can assign a new variable to the exponential function ${e^x}$.
So, let \[t = {e^x} - - - - - \left( 1 \right)\].
Then, differentiating both sides of the equation, we get,
$ \Rightarrow dt = {e^x}dx - - - - - \left( 2 \right)$
So, the integral $\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx$ can be simplified by substituting the value of $\left( {dx} \right)$ in terms of $\left( {dt} \right)$ as obtained above. So, we get,
$\int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} \left( {\dfrac{{dt}}{{{e^x}}}} \right)$
Substituting ${e^x}$ as t, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{2}{{{{\left( {t + \dfrac{1}{t}} \right)}^2}}}} \left( {\dfrac{{dt}}{t}} \right)$
Evaluating the whole square using the algebraic identity ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$. So, we have,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{2}{{\left( {{t^2} + \dfrac{1}{{{t^2}}} + 2} \right)}}} \left( {\dfrac{{dt}}{t}} \right)$
Opening the brackets, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2dt}}{{\left( {{t^3} + \dfrac{1}{t} + 2t} \right)}}} $
Taking LCM in the numerator, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2dt}}{{\left( {\dfrac{{{t^4} + 1 + 2{t^2}}}{t}} \right)}}} $
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2tdt}}{{\left( {{t^4} + 1 + 2{t^2}} \right)}}} $
Now, condensing the denominator using algebraic identity ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2tdt}}{{{{\left( {{t^2} + 1} \right)}^2}}}} $
Now, we again substitute $u = \left( {{t^2} + 1} \right)$.
Differentiating both sides, we get,
$du = 2tdt$
So, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {\dfrac{{2tdt}}{{{{\left( {{t^2} + 1} \right)}^2}}}} = \int {\dfrac{{du}}{{{u^2}}}} $
Now, we know the power rule of integration as $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$. So, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \int {{u^{ - 2}}du} $
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = \dfrac{{{u^{ - 2 + 1}}}}{{ - 2 + 1}} + c$
Simplifying further, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - u + c$
Now, we have the final answer. We just need to substitute u in terms of t and then in terms of x.
So, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - \left( {{t^2} + 1} \right) + c$
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - \left( {{{\left( {{e^x}} \right)}^2} + 1} \right) + c$
Simplifying further, we get,
$ \Rightarrow \int {\dfrac{2}{{{{\left( {{e^x} + {e^{ - x}}} \right)}^2}}}} dx = - \left( {{e^{2x}} + 1} \right) + c$, where c is any arbitrary constant.
Therefore, option (B) is the correct answer.
Note:
The indefinite integrals of certain functions may have more than one answer in different forms. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant. It is extremely important to substitute back the value of the assumed variable, once we have reached the final stage.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

