
How do you verify $\dfrac{{1 - \cos x}}{{1 + \cos x}} = {\left( {\csc x - \cot x} \right)^2}?$
Answer
553.8k+ views
Hint:Multiply and divide L.H.S. (Left hand side) by the conjugate of its denominator. And then use some basic trigonometric identities like sine and cosine relation, sine and cosec relation, and cosine, sine and cot relation. After simplifying this all the left hand side will become equal to the right hand side (R.H.S.). Hence the problem is solved and verified.
Formula used:
$(a + b)(a - b) = {a^2} - {b^2}$
${\sin ^2}x + {\cos ^2}x = 1$
Complete step by step answer:
In order to verify the given equation $\dfrac{{1 - \cos x}}{{1 + \cos x}} = {\left( {\csc x - \cot x} \right)^2}$ we need to prove \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.,}}\] where they are left hand side and right hand side respectively. We will solve left hand side $\left( {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \right)$ to make it equal to the right hand side $\left( {{{\left( {\csc x - \cot x} \right)}^2}} \right)$
So let us start,
${\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Multiplying and dividing it with the conjugate of its denominator, we will get
$\dfrac{{1 - \cos x}}{{1 + \cos x}} \times \dfrac{{1 - \cos x}}{{1 - \cos x}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\$
From the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ simplifying further,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {{1^2} - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\ \]
Using the trigonometric identity of sine and cosine that is the sum of square of sine and cosine equals to one, mathematically it can be written as
${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
Simplifying further using this we will get,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\ \]
We can further write it as
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\
\Rightarrow{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\ \]
Now distributing the denominator over numerator using the distributive property of division,
\[{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\ \]
From the relation between trigonometric functions we know that,
$\csc x = \dfrac{1}{{\sin x}}\;and\;\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substituting these values above, we will get
\[{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\csc x - \cot x} \right)^2} \\
\therefore{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \\ \]
Hence \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\] proved.
Note:You can also start to solve or proof this question from right hand side and end up to left hand side, you have to just decide which way is easier to you wither left hand side to right hand side or right hand side to left hand side.
Formula used:
$(a + b)(a - b) = {a^2} - {b^2}$
${\sin ^2}x + {\cos ^2}x = 1$
Complete step by step answer:
In order to verify the given equation $\dfrac{{1 - \cos x}}{{1 + \cos x}} = {\left( {\csc x - \cot x} \right)^2}$ we need to prove \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.,}}\] where they are left hand side and right hand side respectively. We will solve left hand side $\left( {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \right)$ to make it equal to the right hand side $\left( {{{\left( {\csc x - \cot x} \right)}^2}} \right)$
So let us start,
${\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Multiplying and dividing it with the conjugate of its denominator, we will get
$\dfrac{{1 - \cos x}}{{1 + \cos x}} \times \dfrac{{1 - \cos x}}{{1 - \cos x}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\$
From the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ simplifying further,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {{1^2} - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\ \]
Using the trigonometric identity of sine and cosine that is the sum of square of sine and cosine equals to one, mathematically it can be written as
${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
Simplifying further using this we will get,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\ \]
We can further write it as
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\
\Rightarrow{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\ \]
Now distributing the denominator over numerator using the distributive property of division,
\[{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\ \]
From the relation between trigonometric functions we know that,
$\csc x = \dfrac{1}{{\sin x}}\;and\;\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substituting these values above, we will get
\[{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\csc x - \cot x} \right)^2} \\
\therefore{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \\ \]
Hence \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\] proved.
Note:You can also start to solve or proof this question from right hand side and end up to left hand side, you have to just decide which way is easier to you wither left hand side to right hand side or right hand side to left hand side.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

