Answer
Verified
431.7k+ views
Hint:Multiply and divide L.H.S. (Left hand side) by the conjugate of its denominator. And then use some basic trigonometric identities like sine and cosine relation, sine and cosec relation, and cosine, sine and cot relation. After simplifying this all the left hand side will become equal to the right hand side (R.H.S.). Hence the problem is solved and verified.
Formula used:
$(a + b)(a - b) = {a^2} - {b^2}$
${\sin ^2}x + {\cos ^2}x = 1$
Complete step by step answer:
In order to verify the given equation $\dfrac{{1 - \cos x}}{{1 + \cos x}} = {\left( {\csc x - \cot x} \right)^2}$ we need to prove \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.,}}\] where they are left hand side and right hand side respectively. We will solve left hand side $\left( {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \right)$ to make it equal to the right hand side $\left( {{{\left( {\csc x - \cot x} \right)}^2}} \right)$
So let us start,
${\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Multiplying and dividing it with the conjugate of its denominator, we will get
$\dfrac{{1 - \cos x}}{{1 + \cos x}} \times \dfrac{{1 - \cos x}}{{1 - \cos x}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\$
From the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ simplifying further,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {{1^2} - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\ \]
Using the trigonometric identity of sine and cosine that is the sum of square of sine and cosine equals to one, mathematically it can be written as
${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
Simplifying further using this we will get,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\ \]
We can further write it as
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\
\Rightarrow{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\ \]
Now distributing the denominator over numerator using the distributive property of division,
\[{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\ \]
From the relation between trigonometric functions we know that,
$\csc x = \dfrac{1}{{\sin x}}\;and\;\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substituting these values above, we will get
\[{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\csc x - \cot x} \right)^2} \\
\therefore{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \\ \]
Hence \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\] proved.
Note:You can also start to solve or proof this question from right hand side and end up to left hand side, you have to just decide which way is easier to you wither left hand side to right hand side or right hand side to left hand side.
Formula used:
$(a + b)(a - b) = {a^2} - {b^2}$
${\sin ^2}x + {\cos ^2}x = 1$
Complete step by step answer:
In order to verify the given equation $\dfrac{{1 - \cos x}}{{1 + \cos x}} = {\left( {\csc x - \cot x} \right)^2}$ we need to prove \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.,}}\] where they are left hand side and right hand side respectively. We will solve left hand side $\left( {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \right)$ to make it equal to the right hand side $\left( {{{\left( {\csc x - \cot x} \right)}^2}} \right)$
So let us start,
${\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{1 - \cos x}}{{1 + \cos x}}$
Multiplying and dividing it with the conjugate of its denominator, we will get
$\dfrac{{1 - \cos x}}{{1 + \cos x}} \times \dfrac{{1 - \cos x}}{{1 - \cos x}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\$
From the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ simplifying further,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {{1^2} - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\ \]
Using the trigonometric identity of sine and cosine that is the sum of square of sine and cosine equals to one, mathematically it can be written as
${\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x$
Simplifying further using this we will get,
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{\left( {1 - {{\cos }^2}x} \right)}} \\
\Rightarrow\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\ \]
We can further write it as
\[\dfrac{{{{\left( {1 - \cos x} \right)}^2}}}{{{{\sin }^2}x}} \\
\Rightarrow{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\ \]
Now distributing the denominator over numerator using the distributive property of division,
\[{\left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\ \]
From the relation between trigonometric functions we know that,
$\csc x = \dfrac{1}{{\sin x}}\;and\;\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substituting these values above, we will get
\[{\left( {\dfrac{1}{{\sin x}} - \dfrac{{\cos x}}{{\sin x}}} \right)^2} \\
\Rightarrow{\left( {\csc x - \cot x} \right)^2} \\
\therefore{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \\ \]
Hence \[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\] proved.
Note:You can also start to solve or proof this question from right hand side and end up to left hand side, you have to just decide which way is easier to you wither left hand side to right hand side or right hand side to left hand side.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE