
Verify Rolle’s Theorem for the function $f(x)={{x}^{2}}+2x-8,x\in \left[ -4,2 \right]$.
Answer
520.8k+ views
Hint: Use the basic definition of Rolle’s theorem that if any function f(x) is continuous in [a,b] and differentiable in (a,b) and further f(a) = f(b) then there exist ‘c’ such as ${{f}^{'}}\left( c \right)=0$ where $c\in \left( a,b \right)$
Complete step-by-step answer:
Rolle’s Theorem can be defined with any function f(x) where $x\in \left[ a,b \right]$ as
(i) If f(x) is continuous in [a,b] and
(ii) If f(x) is differentiable in (a,b) and
(iii) If f(a) = f(b) then ${{f}^{'}}\left( c \right)=0$ where $c\in \left[ a,b \right]$
Now, here we have
$f\left( x \right)={{x}^{2}}+2x-8$ and $x\in \left[ -4,2 \right]$
As a given function f(x) is a polynomial function, so we don’t need to worry about the continuity and differentiability of the function because any polynomial function will always be continuous and differentiable for $x\in R$.
Hence, the given function $f\left( x \right)={{x}^{2}}+2x-8$ is continuous in [a,b] and differentiable in (a,b).
Now, coming to the third step of Rolle’s theorem as given in the starting of the solution, we need to calculate f(-4) and f(2) to verify f(-4) = f(2).
So, we have
$\begin{align}
& f\left( x \right)={{x}^{2}}+2x-8 \\
& f\left( -4 \right)={{\left( -4 \right)}^{2}}+2\left( -4 \right)-8 \\
& f\left( -4 \right)=16-8-8=16-16 \\
\end{align}$
Or
f(-4) = 0 …………………(i)
And f(2) can be calculated as
$\begin{align}
& f\left( 2 \right)={{\left( 2 \right)}^{2}}+2\left( 2 \right)-8 \\
& f(2)=4+4-8=8-8 \\
\end{align}$
Or
f(2) = 0 ……………..(ii)
Hence, from equation (i) and (ii) we get,
f(-4) = f(2) = 0
So, it is verified all three points for Rolle’s Theorem.
Now, for ${{f}^{'}}\left( c \right)$ , we have
$f\left( x \right)={{x}^{2}}+2x-8$
Differentiating f(x) w.r.t ‘x’, we get
${{f}^{'}}\left( x \right)=2x+1...........\left( iii \right)$
Where we know $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Now, for equation (iii), we have
${{f}^{'}}\left( c \right)=2c+1$
Equating above equation to ‘0’, we can get value of ‘c’ as
$\begin{align}
& {{f}^{'}}\left( c \right)=0 \\
& \Rightarrow 2c+1=0 \\
& c=\dfrac{-1}{2} \\
\end{align}$
Where $c\in \left[ -4,2 \right]$
Hence, the given function $f\left( x \right)={{x}^{2}}+2x-8$ with $x\in \left( -4,2 \right)$ is satisfying Rolle’s theorem as
f(x) is continuous and differentiable in [-4,2] and (-4,2) respectively and f(-4) = f(2) = 0, then
${{f}^{'}}\left( \dfrac{-1}{2} \right)=0$ where $\dfrac{-1}{2}$ is lying between [-4,2].
Note: One can get confused between Rolle’s Theorem and mean value theorem. So, be careful with these kinds of questions and be clear with both the theorems.
One can factorize the given relation as, (x+4) (x-2) where x = -4 and x = 2 are roots of the given equation. Hence, we can directly write f(-4) = f(2) = 0 without putting values of x to a given function.
Complete step-by-step answer:
Rolle’s Theorem can be defined with any function f(x) where $x\in \left[ a,b \right]$ as
(i) If f(x) is continuous in [a,b] and
(ii) If f(x) is differentiable in (a,b) and
(iii) If f(a) = f(b) then ${{f}^{'}}\left( c \right)=0$ where $c\in \left[ a,b \right]$
Now, here we have
$f\left( x \right)={{x}^{2}}+2x-8$ and $x\in \left[ -4,2 \right]$
As a given function f(x) is a polynomial function, so we don’t need to worry about the continuity and differentiability of the function because any polynomial function will always be continuous and differentiable for $x\in R$.
Hence, the given function $f\left( x \right)={{x}^{2}}+2x-8$ is continuous in [a,b] and differentiable in (a,b).
Now, coming to the third step of Rolle’s theorem as given in the starting of the solution, we need to calculate f(-4) and f(2) to verify f(-4) = f(2).
So, we have
$\begin{align}
& f\left( x \right)={{x}^{2}}+2x-8 \\
& f\left( -4 \right)={{\left( -4 \right)}^{2}}+2\left( -4 \right)-8 \\
& f\left( -4 \right)=16-8-8=16-16 \\
\end{align}$
Or
f(-4) = 0 …………………(i)
And f(2) can be calculated as
$\begin{align}
& f\left( 2 \right)={{\left( 2 \right)}^{2}}+2\left( 2 \right)-8 \\
& f(2)=4+4-8=8-8 \\
\end{align}$
Or
f(2) = 0 ……………..(ii)
Hence, from equation (i) and (ii) we get,
f(-4) = f(2) = 0
So, it is verified all three points for Rolle’s Theorem.
Now, for ${{f}^{'}}\left( c \right)$ , we have
$f\left( x \right)={{x}^{2}}+2x-8$
Differentiating f(x) w.r.t ‘x’, we get
${{f}^{'}}\left( x \right)=2x+1...........\left( iii \right)$
Where we know $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Now, for equation (iii), we have
${{f}^{'}}\left( c \right)=2c+1$
Equating above equation to ‘0’, we can get value of ‘c’ as
$\begin{align}
& {{f}^{'}}\left( c \right)=0 \\
& \Rightarrow 2c+1=0 \\
& c=\dfrac{-1}{2} \\
\end{align}$
Where $c\in \left[ -4,2 \right]$
Hence, the given function $f\left( x \right)={{x}^{2}}+2x-8$ with $x\in \left( -4,2 \right)$ is satisfying Rolle’s theorem as
f(x) is continuous and differentiable in [-4,2] and (-4,2) respectively and f(-4) = f(2) = 0, then
${{f}^{'}}\left( \dfrac{-1}{2} \right)=0$ where $\dfrac{-1}{2}$ is lying between [-4,2].
Note: One can get confused between Rolle’s Theorem and mean value theorem. So, be careful with these kinds of questions and be clear with both the theorems.
One can factorize the given relation as, (x+4) (x-2) where x = -4 and x = 2 are roots of the given equation. Hence, we can directly write f(-4) = f(2) = 0 without putting values of x to a given function.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
