Answer
Verified
429.9k+ views
Hint: We first take the left-hand part of the equation of $\sec x-\cos x=\dfrac{\sin x}{\cot x}$. Then we simplify the equation. We convert the denominator using the relation $\sec x=\dfrac{1}{\cos x}$. Then we use the theorem \[{{\cos }^{2}}x+{{\sin }^{2}}x=1\]. We eliminate the part \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\]. We then divide $\sin x$ from both denominator and numerator After elimination we get the right-hand side of the equation.
Complete step-by-step solution:
We have to prove the trigonometric equation $\sec x-\cos x=\dfrac{\sin x}{\cot x}$.
We take the left-hand side of the equation $\sec x-\cos x=\dfrac{\sin x}{\cot x}$ and prove the right-side part.
We get $\sec x-\cos x$. We know that $\sec x=\dfrac{1}{\cos x}$.
Therefore, $\sec x-\cos x=\dfrac{1}{\cos x}-\cos x=\dfrac{1-{{\cos }^{2}}x}{\cos x}$.
We now use the identity theorem of trigonometry ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ which gives us ${{\sin }^{2}}x=1-{{\cos }^{2}}x$. We place the value in the equation and get $\dfrac{1-{{\cos }^{2}}x}{\cos x}=\dfrac{{{\sin }^{2}}x}{\cos x}$.
We can now divide $\sin x$ from both denominator and numerator.
The equation becomes $\dfrac{{}^{{{\sin }^{2}}x}/{}_{\sin x}}{{}^{\cos x}/{}_{\sin x}}$.
Now we apply the theorem \[\cot x=\dfrac{\cos x}{\sin x}\] again to convert to $\cot x$.
The final form is $\dfrac{{}^{{{\sin }^{2}}x}/{}_{\sin x}}{{}^{\cos x}/{}_{\sin x}}=\dfrac{\sin x}{\cot x}$.
Thus proved $\sec x-\cos x=\dfrac{\sin x}{\cot x}$.
Note: It is important to remember that the condition to eliminate the $\sin x$ from both denominator and numerator is $\sin x\ne 0$. No domain is given for the variable $x$. The simplified condition will be $x\ne n\pi ,n\in \mathbb{Z}$. The identities ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and $\sec x=\dfrac{1}{\cos x}$ are valid for any value of $x$. The division of the fraction part only gives $\sin x$ as the solution.
Complete step-by-step solution:
We have to prove the trigonometric equation $\sec x-\cos x=\dfrac{\sin x}{\cot x}$.
We take the left-hand side of the equation $\sec x-\cos x=\dfrac{\sin x}{\cot x}$ and prove the right-side part.
We get $\sec x-\cos x$. We know that $\sec x=\dfrac{1}{\cos x}$.
Therefore, $\sec x-\cos x=\dfrac{1}{\cos x}-\cos x=\dfrac{1-{{\cos }^{2}}x}{\cos x}$.
We now use the identity theorem of trigonometry ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ which gives us ${{\sin }^{2}}x=1-{{\cos }^{2}}x$. We place the value in the equation and get $\dfrac{1-{{\cos }^{2}}x}{\cos x}=\dfrac{{{\sin }^{2}}x}{\cos x}$.
We can now divide $\sin x$ from both denominator and numerator.
The equation becomes $\dfrac{{}^{{{\sin }^{2}}x}/{}_{\sin x}}{{}^{\cos x}/{}_{\sin x}}$.
Now we apply the theorem \[\cot x=\dfrac{\cos x}{\sin x}\] again to convert to $\cot x$.
The final form is $\dfrac{{}^{{{\sin }^{2}}x}/{}_{\sin x}}{{}^{\cos x}/{}_{\sin x}}=\dfrac{\sin x}{\cot x}$.
Thus proved $\sec x-\cos x=\dfrac{\sin x}{\cot x}$.
Note: It is important to remember that the condition to eliminate the $\sin x$ from both denominator and numerator is $\sin x\ne 0$. No domain is given for the variable $x$. The simplified condition will be $x\ne n\pi ,n\in \mathbb{Z}$. The identities ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and $\sec x=\dfrac{1}{\cos x}$ are valid for any value of $x$. The division of the fraction part only gives $\sin x$ as the solution.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE