Answer
Verified
468.9k+ views
Hint: The zeroes of a polynomial refer to the numerical values of the variable corresponding to which the value of the polynomial expression is zero. For example if $a$ is a zero of a polynomial $p(x)$ ,then $p(a) = 0$ . To find the zeros of a polynomial, set the polynomial expression equal to zero and then solve that equation for the given variable.
Complete step-by-step answer:
For the questions we will be following the process mentioned in the Solution Hint.
(i):
We need to find the value of $x$ for which $p(x)$ is $0$.
So setting $p(x) = 0$ , we get,
$3x + 1 = 0$
$ \Rightarrow x = - \dfrac{1}{3}$
Therefore, $x = - \dfrac{1}{3}$ is a zero of polynomials $p(x)$.
(ii):
Again, we set $p(x) = 0$ ,
$ \Rightarrow 5x - \pi = 0$
$ \Rightarrow x = \dfrac{\pi }{5}$
Therefore, the zero of polynomial $5x - \pi $ is $x = \dfrac{\pi }{5}$ and not $x = \dfrac{4}{5}$.
(iii):
Like before, we set $p(x) = 0$,
${x^2} - 1 = 0$
$ \Rightarrow {x^2} = 1$
$ \Rightarrow x = \sqrt 1 $
$ \Rightarrow x = \pm 1$ (Because both $ - 1 \times - 1 = 1$ and $1 \times 1 = 1$ )
So the zeroes of this polynomial are indeed $x = + 1$ and $x = - 1$. Note that this has two zeroes because it is a quadratic polynomial.
(iv):
We set $p(x) = 0$ like before,
$ \Rightarrow (x + 1)(x - 2) = 0$
Now since it is a multiplication of two terms, the product will be zero when either of the terms are zero. So we will set both the terms to zero individually and get the two zeroes of this polynomial.
Setting $x + 1 = 0$ , we get, $x = - 1$.
And, setting, $x - 2 = 0$, we get, $x = 2$.
Therefore the two zeroes of this polynomial are $x = - 1$ and $x = 2$.
(v):
Setting $p(x) = 0$ ,we get,
${x^2} = 0$
$ \Rightarrow x = 0$ ($\because \sqrt 0 = 0$ )
So the zero of this polynomial is $x = 0$.
(vi):
In this question, $l$ and $m$ are coefficients. Like the previous questions, we set $p(x) = 0$.
$\therefore lx + m = 0$
$ \Rightarrow lx = - m$
$ \Rightarrow x = - \dfrac{m}{l}$
Therefore, the zero of this polynomial is $x = - \dfrac{m}{l}$.
(vii):
Setting $p(x) = 0$ ,we get,
$3{x^2} - 1 = 0$
$ \Rightarrow 3{x^2} = 1$
$ \Rightarrow {x^2} = \dfrac{1}{3}$
$ \Rightarrow x = \dfrac{{\sqrt 1 }}{{\sqrt 3 }}$
$ \Rightarrow x = \pm \dfrac{1}{{\sqrt 3 }}$
The zeroes of this polynomial are, therefore, $x = \dfrac{1}{{\sqrt 3 }}$ and $x = - \dfrac{1}{{\sqrt 3 }}$ and not $x = \dfrac{2}{{\sqrt 3 }}$.
(viii):
Setting $p(x) = 0$ , we get,
$2x + 1 = 0$
$ \Rightarrow 2x = - 1$
$ \Rightarrow x = - \dfrac{1}{2}$
Therefore, the zero of this polynomial is $x = - \dfrac{1}{2}$ and not $x = \dfrac{1}{2}$.
Note: Always remember that when taking the square root of a number, we need to consider both the positive and the negative component of it. Also observe that for a linear polynomial we get one zero, for a quadratic polynomial, we get two zeroes, for a cubic polynomial, we get three zeroes and so on. So if you get more or less a number of zeroes for a polynomial of a particular degree, recheck your answer for possible mistakes.
Complete step-by-step answer:
For the questions we will be following the process mentioned in the Solution Hint.
(i):
We need to find the value of $x$ for which $p(x)$ is $0$.
So setting $p(x) = 0$ , we get,
$3x + 1 = 0$
$ \Rightarrow x = - \dfrac{1}{3}$
Therefore, $x = - \dfrac{1}{3}$ is a zero of polynomials $p(x)$.
(ii):
Again, we set $p(x) = 0$ ,
$ \Rightarrow 5x - \pi = 0$
$ \Rightarrow x = \dfrac{\pi }{5}$
Therefore, the zero of polynomial $5x - \pi $ is $x = \dfrac{\pi }{5}$ and not $x = \dfrac{4}{5}$.
(iii):
Like before, we set $p(x) = 0$,
${x^2} - 1 = 0$
$ \Rightarrow {x^2} = 1$
$ \Rightarrow x = \sqrt 1 $
$ \Rightarrow x = \pm 1$ (Because both $ - 1 \times - 1 = 1$ and $1 \times 1 = 1$ )
So the zeroes of this polynomial are indeed $x = + 1$ and $x = - 1$. Note that this has two zeroes because it is a quadratic polynomial.
(iv):
We set $p(x) = 0$ like before,
$ \Rightarrow (x + 1)(x - 2) = 0$
Now since it is a multiplication of two terms, the product will be zero when either of the terms are zero. So we will set both the terms to zero individually and get the two zeroes of this polynomial.
Setting $x + 1 = 0$ , we get, $x = - 1$.
And, setting, $x - 2 = 0$, we get, $x = 2$.
Therefore the two zeroes of this polynomial are $x = - 1$ and $x = 2$.
(v):
Setting $p(x) = 0$ ,we get,
${x^2} = 0$
$ \Rightarrow x = 0$ ($\because \sqrt 0 = 0$ )
So the zero of this polynomial is $x = 0$.
(vi):
In this question, $l$ and $m$ are coefficients. Like the previous questions, we set $p(x) = 0$.
$\therefore lx + m = 0$
$ \Rightarrow lx = - m$
$ \Rightarrow x = - \dfrac{m}{l}$
Therefore, the zero of this polynomial is $x = - \dfrac{m}{l}$.
(vii):
Setting $p(x) = 0$ ,we get,
$3{x^2} - 1 = 0$
$ \Rightarrow 3{x^2} = 1$
$ \Rightarrow {x^2} = \dfrac{1}{3}$
$ \Rightarrow x = \dfrac{{\sqrt 1 }}{{\sqrt 3 }}$
$ \Rightarrow x = \pm \dfrac{1}{{\sqrt 3 }}$
The zeroes of this polynomial are, therefore, $x = \dfrac{1}{{\sqrt 3 }}$ and $x = - \dfrac{1}{{\sqrt 3 }}$ and not $x = \dfrac{2}{{\sqrt 3 }}$.
(viii):
Setting $p(x) = 0$ , we get,
$2x + 1 = 0$
$ \Rightarrow 2x = - 1$
$ \Rightarrow x = - \dfrac{1}{2}$
Therefore, the zero of this polynomial is $x = - \dfrac{1}{2}$ and not $x = \dfrac{1}{2}$.
Note: Always remember that when taking the square root of a number, we need to consider both the positive and the negative component of it. Also observe that for a linear polynomial we get one zero, for a quadratic polynomial, we get two zeroes, for a cubic polynomial, we get three zeroes and so on. So if you get more or less a number of zeroes for a polynomial of a particular degree, recheck your answer for possible mistakes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE