Answer
Verified
497.4k+ views
Hint- If the hollow sphere has its outer radius as R and inner radius as small r then volume of the sphere is given as $V = \dfrac{4}{3}\pi ({R^3} - {r^3})$ . Using this formula we will find our solution.
Let $R$ and $r$ be the outer and inner radii of the hollow sphere respectively.
Let $V$ be the volume of the hollow sphere.
Complete step-by-step answer:
Given that volume of the sphere is
$V = \dfrac{{11352}}{7}{\text{ c}}{{\text{m}}^3}$
And outer radius is
$R = 8cm$
Now substituting these values in the formula of volume of sphere, we obtain
$
\Rightarrow V = \dfrac{4}{3}\pi ({R^3} - {r^3}) \\
\Rightarrow \dfrac{{11352}}{7} = \dfrac{4}{3} \times \dfrac{{22}}{7}({8^3} - {r^3}) \\
$
On simplifying above equation for the value of $r$ , we obtain
\[
\Rightarrow \dfrac{{11352 \times 3}}{{22 \times 4}} = {8^3} - {r^3} \\
\Rightarrow 387 = 512 - {r^3} \\
\Rightarrow {r^3} = 512 - 387 \\
\Rightarrow {r^3} = 125 \\
\Rightarrow r = 5cm \\
\]
Hence, the inner radius of the hollow sphere is, \[r = 5cm\]
Note- To solve these types of questions formulas of volumes of shapes must be remembered. Here we have to calculate the volume of a hollow sphere and both the radii are given. We have calculated the volume of the hollow part with a small radius and volume of the whole sphere; then we subtracted the volume of the hollow sphere from the volume of the whole sphere. In this question we have the formula but the question can be solved using this approach also.
Let $R$ and $r$ be the outer and inner radii of the hollow sphere respectively.
Let $V$ be the volume of the hollow sphere.
Complete step-by-step answer:
Given that volume of the sphere is
$V = \dfrac{{11352}}{7}{\text{ c}}{{\text{m}}^3}$
And outer radius is
$R = 8cm$
Now substituting these values in the formula of volume of sphere, we obtain
$
\Rightarrow V = \dfrac{4}{3}\pi ({R^3} - {r^3}) \\
\Rightarrow \dfrac{{11352}}{7} = \dfrac{4}{3} \times \dfrac{{22}}{7}({8^3} - {r^3}) \\
$
On simplifying above equation for the value of $r$ , we obtain
\[
\Rightarrow \dfrac{{11352 \times 3}}{{22 \times 4}} = {8^3} - {r^3} \\
\Rightarrow 387 = 512 - {r^3} \\
\Rightarrow {r^3} = 512 - 387 \\
\Rightarrow {r^3} = 125 \\
\Rightarrow r = 5cm \\
\]
Hence, the inner radius of the hollow sphere is, \[r = 5cm\]
Note- To solve these types of questions formulas of volumes of shapes must be remembered. Here we have to calculate the volume of a hollow sphere and both the radii are given. We have calculated the volume of the hollow part with a small radius and volume of the whole sphere; then we subtracted the volume of the hollow sphere from the volume of the whole sphere. In this question we have the formula but the question can be solved using this approach also.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE