Answer
Verified
396.9k+ views
Hint: We know that Hybridization involves the mixing of atomic orbitals of an atom (generally a central atom) to generate a new set of atomic orbitals which is called the hybrid orbitals. Hence to find the hybridization of the central metal atom we need to first write the electronic configuration and then draw the orbitals in which the bonded atom will be filled.
Complete answer:
Let us firstly know what the electronic configuration ion of an atom really is before moving onto answering the given question. The electron configuration is a representation of the arrangement of electrons distributed among the shells and subshells in the orbitals of an atom; and is mostly used for describing the electronic arrangement in the orbitals of an atom in its ground state. The easiest way to solve this question is by calculating the hybridization of the compound given above. We generally consider the hybridization of the central element, but in this case, all the atoms will act the same, i.e. hybridization of all four phosphorus will be the same.
Due to the large atomic size of the phosphorus, it is unable to form pi bonds and it is tetratomic in which each p atom is linked with the \[3\] other p atoms by sigma bond. To form a triple bond between the two phosphorus there should be enough space in between them. As the atomic size is large it is not possible. They use d orbitals to make pi bonds.
Note:
Remember that the Hund’s maximum spin multiplicity implies only for the orbitals that have the same amount of energy. That means you need not to put electrons in the \[4p\] orbital of Krypton until the \[4s\] orbital is full.
Complete answer:
Let us firstly know what the electronic configuration ion of an atom really is before moving onto answering the given question. The electron configuration is a representation of the arrangement of electrons distributed among the shells and subshells in the orbitals of an atom; and is mostly used for describing the electronic arrangement in the orbitals of an atom in its ground state. The easiest way to solve this question is by calculating the hybridization of the compound given above. We generally consider the hybridization of the central element, but in this case, all the atoms will act the same, i.e. hybridization of all four phosphorus will be the same.
Due to the large atomic size of the phosphorus, it is unable to form pi bonds and it is tetratomic in which each p atom is linked with the \[3\] other p atoms by sigma bond. To form a triple bond between the two phosphorus there should be enough space in between them. As the atomic size is large it is not possible. They use d orbitals to make pi bonds.
Note:
Remember that the Hund’s maximum spin multiplicity implies only for the orbitals that have the same amount of energy. That means you need not to put electrons in the \[4p\] orbital of Krypton until the \[4s\] orbital is full.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE