
What weight of zinc will react with dilute sulphuric acid to liberate $1000mL$ of hydrogen at ${27^ \circ }C$ and $750mm$ of $Hg$ pressure?
Answer
592.8k+ views
Hint: The ideal gas law is generally called the general gas equation. It is the equation of state of a hypothetical ideal gas. This equation relates the pressure, temperature, amount, and temperature of gas with each other.
Formula used: $PV = nRT$
$n = \dfrac{m}{M}$
Where $P$ is pressure, $V$ is volume, $n$ is number of moles, $R$ is gas constant $T$ is temperature, $m$ is given mass and $M$ is molecular mass of substance.
Complete step by step answer:
In this question we have to find the weight of zinc which will react with dilute sulphuric acid to liberate $1000mL$ of hydrogen at ${27^ \circ }C$ and $750mm$ of $Hg$ pressure. According to ideal gas equation:
$PV = nRT$
Given pressure is $750mm$ of $Hg = \dfrac{{750}}{{760}}atm$
Gas constant$\left( R \right) = 0.08206Latm{K^{ - 1}}mo{l^{ - 1}}$
Temperature$\left( T \right) = {27^ \circ }C = 27 + 273 = 300K$
Volume$\left( V \right) = 1000mL = 1L$
Substituting these values in above equation:
$\dfrac{{750}}{{760}} \times 1 = n \times 0.08206 \times 300$
Solving this we get:
$n = 0.04$
So, number of moles are $0.04$
Molecular mass of zinc is $65$ so we can calculate given mass of zinc by using formula:
$n = \dfrac{m}{M}$
Substituting the values:
$0.04 = \dfrac{m}{{65}}$
Solving this equation we will get:
$m = 2.605$
So, the answer is $2.605g$
Additional information: An ideal gas has a number of properties; real gases often exhibit behavior very close to ideal. The properties of an ideal gas are:
An ideal gas consists of a large number of identical molecules.
The volume occupied by the molecules themselves is negligible compared to the volume occupied by the gas.
The molecules obey Newton's laws of motion, and they move in random motion.
The molecules experience forces only during collisions; any collisions are completely elastic and take a negligible amount of time.
Note:
The ideal gas model tends to fail at lower temperatures or higher pressures when intermolecular forces and molecular size becomes important. It also fails for most heavy gases, such as many refrigerants, and for gases with strong intermolecular forces, notably water vapor.
Formula used: $PV = nRT$
$n = \dfrac{m}{M}$
Where $P$ is pressure, $V$ is volume, $n$ is number of moles, $R$ is gas constant $T$ is temperature, $m$ is given mass and $M$ is molecular mass of substance.
Complete step by step answer:
In this question we have to find the weight of zinc which will react with dilute sulphuric acid to liberate $1000mL$ of hydrogen at ${27^ \circ }C$ and $750mm$ of $Hg$ pressure. According to ideal gas equation:
$PV = nRT$
Given pressure is $750mm$ of $Hg = \dfrac{{750}}{{760}}atm$
Gas constant$\left( R \right) = 0.08206Latm{K^{ - 1}}mo{l^{ - 1}}$
Temperature$\left( T \right) = {27^ \circ }C = 27 + 273 = 300K$
Volume$\left( V \right) = 1000mL = 1L$
Substituting these values in above equation:
$\dfrac{{750}}{{760}} \times 1 = n \times 0.08206 \times 300$
Solving this we get:
$n = 0.04$
So, number of moles are $0.04$
Molecular mass of zinc is $65$ so we can calculate given mass of zinc by using formula:
$n = \dfrac{m}{M}$
Substituting the values:
$0.04 = \dfrac{m}{{65}}$
Solving this equation we will get:
$m = 2.605$
So, the answer is $2.605g$
Additional information: An ideal gas has a number of properties; real gases often exhibit behavior very close to ideal. The properties of an ideal gas are:
An ideal gas consists of a large number of identical molecules.
The volume occupied by the molecules themselves is negligible compared to the volume occupied by the gas.
The molecules obey Newton's laws of motion, and they move in random motion.
The molecules experience forces only during collisions; any collisions are completely elastic and take a negligible amount of time.
Note:
The ideal gas model tends to fail at lower temperatures or higher pressures when intermolecular forces and molecular size becomes important. It also fails for most heavy gases, such as many refrigerants, and for gases with strong intermolecular forces, notably water vapor.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

