
What is ${}^{3}{{C}_{2}}$?
Answer
522k+ views
Hint: We first discuss the general form of combination and its general meaning with the help of variables. We express the mathematical notion with respect to the factorial form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. Then we place the values for ${}^{3}{{C}_{2}}$ as $n=3;r=2$. We complete the multiplication and find the solution.
Complete step by step solution:
The given mathematical expression ${}^{3}{{C}_{2}}$ is an example of combination.
We first try to find the general form of combination and its general meaning and then we put the values to find the solution.
The general form of combination is ${}^{n}{{C}_{r}}$. It’s used to express the notion of choosing r objects out of n objects. The value of ${}^{n}{{C}_{r}}$ expresses the number of ways the combination of those objects can be done.
The simplified form of the mathematical expression ${}^{n}{{C}_{r}}$ is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
Here the term $n!$ defines the notion of multiplication of first n natural numbers.
This means $n!=1\times 2\times 3\times ....\times n$.
The arrangement of those chosen objects is not considered in case of combination. That part is involved in permutation.
Now we try to find the value of ${}^{3}{{C}_{2}}$. We put the values of $n=3;r=2$ and get \[{}^{3}{{C}_{2}}=\dfrac{3!}{2!\times \left( 3-2 \right)!}\].
We now solve the factorial values.
\[{}^{3}{{C}_{2}}=\dfrac{3\times 2!}{2!\times 1!}=3\].
Therefore, the value of the combination ${}^{3}{{C}_{2}}$ is 3.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing $\left( n-r \right)$ objects out of n objects. The mathematical expression is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}$.
Complete step by step solution:
The given mathematical expression ${}^{3}{{C}_{2}}$ is an example of combination.
We first try to find the general form of combination and its general meaning and then we put the values to find the solution.
The general form of combination is ${}^{n}{{C}_{r}}$. It’s used to express the notion of choosing r objects out of n objects. The value of ${}^{n}{{C}_{r}}$ expresses the number of ways the combination of those objects can be done.
The simplified form of the mathematical expression ${}^{n}{{C}_{r}}$ is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
Here the term $n!$ defines the notion of multiplication of first n natural numbers.
This means $n!=1\times 2\times 3\times ....\times n$.
The arrangement of those chosen objects is not considered in case of combination. That part is involved in permutation.
Now we try to find the value of ${}^{3}{{C}_{2}}$. We put the values of $n=3;r=2$ and get \[{}^{3}{{C}_{2}}=\dfrac{3!}{2!\times \left( 3-2 \right)!}\].
We now solve the factorial values.
\[{}^{3}{{C}_{2}}=\dfrac{3\times 2!}{2!\times 1!}=3\].
Therefore, the value of the combination ${}^{3}{{C}_{2}}$ is 3.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing $\left( n-r \right)$ objects out of n objects. The mathematical expression is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

