
What is 5i equal to?
Answer
527.4k+ views
Hint: We explain the concept of complex number and find its general form. Then we use the general form to convert the given form of $5i$ in full complex number. We also state the relation between complex number $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
Complete step-by-step solution:
Combination of both the real number and imaginary number is a complex number.
Complex numbers are often represented on the complex plane, sometimes known as the Argand plane or Argand diagram. In the complex plane, there is a real axis and a perpendicular, imaginary axis. All the complex numbers can be represented in the form of a circle with a centre point at the origin.
Complex numbers are the numbers that are expressed in the form of $a+ib$ where $a,b$ are real numbers and $i$ is an imaginary number called ‘iota’.
The given expression is a representation of the complex number.
Here the complex number is the term $i=\sqrt{-1}$. 5 is the constant multiple to the term $i$.
The relation and conditions for the complex number $i$ is that ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
Now we try to express the $5i$ in full complex form.
We know that $a=\sqrt{{{a}^{2}}}$. We use that to express that in the form of
$5i=5\sqrt{-1}=\sqrt{25}\sqrt{-1}=\sqrt{-25}$.
Note: We need to remember that real numbers are actually a part of imaginary numbers. In the general form of $a+ib$, if we take the value of $b=0$, we get any real number. Therefore, we can say that the real number set is a subset of a complex number.
Complete step-by-step solution:
Combination of both the real number and imaginary number is a complex number.
Complex numbers are often represented on the complex plane, sometimes known as the Argand plane or Argand diagram. In the complex plane, there is a real axis and a perpendicular, imaginary axis. All the complex numbers can be represented in the form of a circle with a centre point at the origin.
Complex numbers are the numbers that are expressed in the form of $a+ib$ where $a,b$ are real numbers and $i$ is an imaginary number called ‘iota’.
The given expression is a representation of the complex number.
Here the complex number is the term $i=\sqrt{-1}$. 5 is the constant multiple to the term $i$.
The relation and conditions for the complex number $i$ is that ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
Now we try to express the $5i$ in full complex form.
We know that $a=\sqrt{{{a}^{2}}}$. We use that to express that in the form of
$5i=5\sqrt{-1}=\sqrt{25}\sqrt{-1}=\sqrt{-25}$.
Note: We need to remember that real numbers are actually a part of imaginary numbers. In the general form of $a+ib$, if we take the value of $b=0$, we get any real number. Therefore, we can say that the real number set is a subset of a complex number.
Recently Updated Pages
Find the height above the surface of the earth where class 11 physics CBSE

List any two functions of central government class 11 social science CBSE

What is a solitary flower class 11 biology CBSE

The entropy change involved in the isothermal reversible class 11 chemistry CBSE

What is the SI unit of temperature A Kelvin B Celsius class 11 chemistry CBSE

The AM of two numbers is 34 and GM is 16the numbers class 11 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

