
What is $\cos A-\cos B$?
Answer
582k+ views
Hint: We will split the values of angles $A$ and $B$ in a certain way. Then we will use trigonometric identities to expand the given expression. The trigonometric identities that we will use are $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$ and $\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y$. Simplifying this modified expression, we will be able to find the value for the given expression.
Complete step-by-step answer:
We have to find the value for the expression $\cos A-\cos B$. Now, we can write angles $A$ and $B$ in the following manner,
$A=\dfrac{A+B}{2}+\dfrac{A-B}{2}$ and $B=\dfrac{A+B}{2}-\dfrac{A-B}{2}$.
Substituting these values in the given expression, we get
$\cos A-\cos B=\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)-\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)$
We know the following trigonometric identities,
$\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$
$\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y$
We can use these trigonometric identities to expand the terms on the right hand side of the above expression in the following manner,
$\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
$\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)+\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
So, now we have the following expression,
$\begin{align}
& \cos A-\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& -\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
\end{align}$
Simplifying the above expression we get,
$\begin{align}
& \cos A-\cos B=-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& =-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
\end{align}$
Hence, we get the final expression as $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$.
Note: The final expression is a formula that relates sum or difference to the product. The same method can be used to prove the remaining results of the sum and product identities. The identity for $\cos A+\cos B$ is given by $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. The identities for the sum or difference of sine functions and of tangent functions are similar to that of the cosine functions'.
Complete step-by-step answer:
We have to find the value for the expression $\cos A-\cos B$. Now, we can write angles $A$ and $B$ in the following manner,
$A=\dfrac{A+B}{2}+\dfrac{A-B}{2}$ and $B=\dfrac{A+B}{2}-\dfrac{A-B}{2}$.
Substituting these values in the given expression, we get
$\cos A-\cos B=\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)-\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)$
We know the following trigonometric identities,
$\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$
$\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y$
We can use these trigonometric identities to expand the terms on the right hand side of the above expression in the following manner,
$\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
$\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)+\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
So, now we have the following expression,
$\begin{align}
& \cos A-\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& -\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
\end{align}$
Simplifying the above expression we get,
$\begin{align}
& \cos A-\cos B=-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& =-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
\end{align}$
Hence, we get the final expression as $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$.
Note: The final expression is a formula that relates sum or difference to the product. The same method can be used to prove the remaining results of the sum and product identities. The identity for $\cos A+\cos B$ is given by $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. The identities for the sum or difference of sine functions and of tangent functions are similar to that of the cosine functions'.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

