
What is the derivative of \[{\sin ^{ - 1}}(x)\]?
Answer
515.1k+ views
Hint: Here, in the question given, we are asked to find the derivative of inverse of sine function. We will first put the given value equal to some unknown variable \[y\]. This will help us in differentiating the given value with respect to its variable \[x\]. And then we will further simplify it to get the desired result. We will use the trigonometric identities, if needed.
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step by step solution:
Let \[y = {\sin ^{ - 1}}x\]
Taking \[\sin \] both sides, we get,
\[\sin y = \sin \left( {{{\sin }^{ - 1}}x} \right)\]
Simplifying the right hand side, we get,
\[\sin y = x\;\;\; \ldots \left( 1 \right)\] where \[ - \dfrac{\pi }{2} \leqslant y \leqslant \dfrac{\pi }{2}\] (according to sine inverse definition)
Now, differentiating w.r.t. \[x\] both sides, we get
\[\dfrac{d}{{dx}}\left( {\sin y} \right) = \dfrac{d}{{dx}}\left( x \right)\]
Simplifying it, we get
\[\cos y\dfrac{{dy}}{{dx}} = 1\]
Dividing by \[\cos y\] both sides, we obtain,
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos y}}\]
Since \[y \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\], we have positive values of \[\cos y\]
Using the identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }}\]
Substituting the value of \[y\] from equation \[\left( 1 \right)\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Substituting the value of \[y\] back again, we obtain
\[\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Note: The symbol \[{\sin ^{ - 1}}x\] should not be confused with \[{\left( {\sin x} \right)^{ - 1}}\]. In-fact \[{\sin ^{ - 1}}x\] is an angle, the value of whose sine is \[x\]. The only key concept to solve such types of questions is that we must remember all the basic trigonometric identities and their application. This will help us to solve almost all the questions.
The restriction on \[y\] taken above is there only to be sure that we get a consistent answer out of inverse of sine. We know that there are infinite numbers of angles that will work but we want to get the consistent value when we work with the inverse of the sine function.
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step by step solution:
Let \[y = {\sin ^{ - 1}}x\]
Taking \[\sin \] both sides, we get,
\[\sin y = \sin \left( {{{\sin }^{ - 1}}x} \right)\]
Simplifying the right hand side, we get,
\[\sin y = x\;\;\; \ldots \left( 1 \right)\] where \[ - \dfrac{\pi }{2} \leqslant y \leqslant \dfrac{\pi }{2}\] (according to sine inverse definition)
Now, differentiating w.r.t. \[x\] both sides, we get
\[\dfrac{d}{{dx}}\left( {\sin y} \right) = \dfrac{d}{{dx}}\left( x \right)\]
Simplifying it, we get
\[\cos y\dfrac{{dy}}{{dx}} = 1\]
Dividing by \[\cos y\] both sides, we obtain,
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos y}}\]
Since \[y \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\], we have positive values of \[\cos y\]
Using the identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }}\]
Substituting the value of \[y\] from equation \[\left( 1 \right)\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Substituting the value of \[y\] back again, we obtain
\[\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Note: The symbol \[{\sin ^{ - 1}}x\] should not be confused with \[{\left( {\sin x} \right)^{ - 1}}\]. In-fact \[{\sin ^{ - 1}}x\] is an angle, the value of whose sine is \[x\]. The only key concept to solve such types of questions is that we must remember all the basic trigonometric identities and their application. This will help us to solve almost all the questions.
The restriction on \[y\] taken above is there only to be sure that we get a consistent answer out of inverse of sine. We know that there are infinite numbers of angles that will work but we want to get the consistent value when we work with the inverse of the sine function.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

