What is the graph of \[y = {\sin ^2}x\] ?
Answer
Verified
415.5k+ views
Hint: Here in this question, we have to plot the graph of a given trigonometric function. To solve this better we have to find the amplitude and period. Firstly, rewrite the given trigonometric function in the form of \[a\cos \left( {bx - c} \right) + d\] using the double angle formula, to Find the amplitude = \[\left| a \right|\] , then Find the period using the formula \[\dfrac{{2\pi }}{{\left| b \right|}}\] , \[\dfrac{c}{b}\] represent the phase shift and \[d\] represent the vertical shift, using all these we can plot the required graph.
Complete step by step solution:
Consider the given trigonometric function:
\[ \Rightarrow \,\,y = {\sin ^2}x\] -------(1)
As we know the double angle formula for cosine: \[\cos \left( {2x} \right) = 1 - 2{\sin ^2}\left( x \right)\]
It can be rewritten as:
\[ \Rightarrow \,\,\cos \left( {2x} \right) - 1 = - 2{\sin ^2}\left( x \right)\]
Divide both side by -2
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = \dfrac{{ - \cos \left( {2x} \right)}}{2} + \dfrac{1}{2}\]
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
The equation (1), becomes
\[ \Rightarrow \,\,y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Let the above equation be similar to the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] to find the variables used to find the amplitude, and period.
Now consider the given expression \[y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Where,
\[a = - \dfrac{1}{2}\]
\[b = 2\]
\[c = 0\]
\[d = \dfrac{1}{2}\]
The Amplitude is the height from the centre line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide that by 2.
To Find the amplitude = \[\left| a \right|\] .
\[ \Rightarrow \,\,\] Amplitude \[ = \left| a \right| = \left| { - \dfrac{1}{2}} \right| = \dfrac{1}{2}\] .
Then in the graph
Phase shift \[\dfrac{c}{b} = 0\] .
Vertical shift up by \[d = \dfrac{1}{2}\] .
Period is the complete revolution of a wave completing crest and followed by trough
Otherwise
The Period goes from one peak to the next (or from any point to the next matching point):
Find the period using the formula \[\dfrac{{2\pi }}{{\left| b \right|}}\]
\[ \Rightarrow \,\,\] Period \[ = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{2}\, = \pi \] .
The sketch of the given function \[y = {\sin ^2}x\] is:
Note: The period is the length of the smallest interval that contains exactly one copy of the repeating pattern. The Amplitude is the height from the centre line to the peak. We use the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] and we have formula for the period and amplitude and hence we determine the values.
Complete step by step solution:
Consider the given trigonometric function:
\[ \Rightarrow \,\,y = {\sin ^2}x\] -------(1)
As we know the double angle formula for cosine: \[\cos \left( {2x} \right) = 1 - 2{\sin ^2}\left( x \right)\]
It can be rewritten as:
\[ \Rightarrow \,\,\cos \left( {2x} \right) - 1 = - 2{\sin ^2}\left( x \right)\]
Divide both side by -2
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = \dfrac{{ - \cos \left( {2x} \right)}}{2} + \dfrac{1}{2}\]
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
The equation (1), becomes
\[ \Rightarrow \,\,y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Let the above equation be similar to the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] to find the variables used to find the amplitude, and period.
Now consider the given expression \[y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Where,
\[a = - \dfrac{1}{2}\]
\[b = 2\]
\[c = 0\]
\[d = \dfrac{1}{2}\]
The Amplitude is the height from the centre line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide that by 2.
To Find the amplitude = \[\left| a \right|\] .
\[ \Rightarrow \,\,\] Amplitude \[ = \left| a \right| = \left| { - \dfrac{1}{2}} \right| = \dfrac{1}{2}\] .
Then in the graph
Phase shift \[\dfrac{c}{b} = 0\] .
Vertical shift up by \[d = \dfrac{1}{2}\] .
Period is the complete revolution of a wave completing crest and followed by trough
Otherwise
The Period goes from one peak to the next (or from any point to the next matching point):
Find the period using the formula \[\dfrac{{2\pi }}{{\left| b \right|}}\]
\[ \Rightarrow \,\,\] Period \[ = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{2}\, = \pi \] .
The sketch of the given function \[y = {\sin ^2}x\] is:
Note: The period is the length of the smallest interval that contains exactly one copy of the repeating pattern. The Amplitude is the height from the centre line to the peak. We use the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] and we have formula for the period and amplitude and hence we determine the values.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE