Answer
Verified
405.3k+ views
Hint: Here in this question, we have to plot the graph of a given trigonometric function. To solve this better we have to find the amplitude and period. Firstly, rewrite the given trigonometric function in the form of \[a\cos \left( {bx - c} \right) + d\] using the double angle formula, to Find the amplitude = \[\left| a \right|\] , then Find the period using the formula \[\dfrac{{2\pi }}{{\left| b \right|}}\] , \[\dfrac{c}{b}\] represent the phase shift and \[d\] represent the vertical shift, using all these we can plot the required graph.
Complete step by step solution:
Consider the given trigonometric function:
\[ \Rightarrow \,\,y = {\sin ^2}x\] -------(1)
As we know the double angle formula for cosine: \[\cos \left( {2x} \right) = 1 - 2{\sin ^2}\left( x \right)\]
It can be rewritten as:
\[ \Rightarrow \,\,\cos \left( {2x} \right) - 1 = - 2{\sin ^2}\left( x \right)\]
Divide both side by -2
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = \dfrac{{ - \cos \left( {2x} \right)}}{2} + \dfrac{1}{2}\]
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
The equation (1), becomes
\[ \Rightarrow \,\,y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Let the above equation be similar to the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] to find the variables used to find the amplitude, and period.
Now consider the given expression \[y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Where,
\[a = - \dfrac{1}{2}\]
\[b = 2\]
\[c = 0\]
\[d = \dfrac{1}{2}\]
The Amplitude is the height from the centre line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide that by 2.
To Find the amplitude = \[\left| a \right|\] .
\[ \Rightarrow \,\,\] Amplitude \[ = \left| a \right| = \left| { - \dfrac{1}{2}} \right| = \dfrac{1}{2}\] .
Then in the graph
Phase shift \[\dfrac{c}{b} = 0\] .
Vertical shift up by \[d = \dfrac{1}{2}\] .
Period is the complete revolution of a wave completing crest and followed by trough
Otherwise
The Period goes from one peak to the next (or from any point to the next matching point):
Find the period using the formula \[\dfrac{{2\pi }}{{\left| b \right|}}\]
\[ \Rightarrow \,\,\] Period \[ = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{2}\, = \pi \] .
The sketch of the given function \[y = {\sin ^2}x\] is:
Note: The period is the length of the smallest interval that contains exactly one copy of the repeating pattern. The Amplitude is the height from the centre line to the peak. We use the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] and we have formula for the period and amplitude and hence we determine the values.
Complete step by step solution:
Consider the given trigonometric function:
\[ \Rightarrow \,\,y = {\sin ^2}x\] -------(1)
As we know the double angle formula for cosine: \[\cos \left( {2x} \right) = 1 - 2{\sin ^2}\left( x \right)\]
It can be rewritten as:
\[ \Rightarrow \,\,\cos \left( {2x} \right) - 1 = - 2{\sin ^2}\left( x \right)\]
Divide both side by -2
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = \dfrac{{ - \cos \left( {2x} \right)}}{2} + \dfrac{1}{2}\]
\[ \Rightarrow \,\,{\sin ^2}\left( x \right) = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
The equation (1), becomes
\[ \Rightarrow \,\,y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Let the above equation be similar to the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] to find the variables used to find the amplitude, and period.
Now consider the given expression \[y = - \dfrac{1}{2}\cos \left( {2x} \right) + \dfrac{1}{2}\]
Where,
\[a = - \dfrac{1}{2}\]
\[b = 2\]
\[c = 0\]
\[d = \dfrac{1}{2}\]
The Amplitude is the height from the centre line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide that by 2.
To Find the amplitude = \[\left| a \right|\] .
\[ \Rightarrow \,\,\] Amplitude \[ = \left| a \right| = \left| { - \dfrac{1}{2}} \right| = \dfrac{1}{2}\] .
Then in the graph
Phase shift \[\dfrac{c}{b} = 0\] .
Vertical shift up by \[d = \dfrac{1}{2}\] .
Period is the complete revolution of a wave completing crest and followed by trough
Otherwise
The Period goes from one peak to the next (or from any point to the next matching point):
Find the period using the formula \[\dfrac{{2\pi }}{{\left| b \right|}}\]
\[ \Rightarrow \,\,\] Period \[ = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{{\left| 2 \right|}} = \dfrac{{2\pi }}{2}\, = \pi \] .
The sketch of the given function \[y = {\sin ^2}x\] is:
Note: The period is the length of the smallest interval that contains exactly one copy of the repeating pattern. The Amplitude is the height from the centre line to the peak. We use the form of equation i.e., \[a\cos \left( {bx - c} \right) + d\] and we have formula for the period and amplitude and hence we determine the values.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE