What is the remainder theorem?
Answer
Verified
414.3k+ views
Hint: Theoretically, an approach of Euclidean division of polynomials is known as the Remainder Theorem. This Theorem states that if we are given with a polynomial $p\left( x \right)$ which is divided by a factor $\left( {x - c} \right)$. Then the remainder obtained would be $p\left( x \right)$ at $x = c$.
Complete step-by-step answer:
According to the basic definition of Remainder Theorem, if there is a polynomial $p\left( x \right)$ whose variable is $x$, and that polynomial is divided by a linear factor $\left( {x - a} \right)$, where $a$ is some constant. And the result obtained would be some polynomial quotient $q\left( x \right)$ and a remainder $r$. And also, the remainder $r\left( x \right)$ obtained is actually $p\left( x \right)$ at $x = a$ or $p\left( a \right)$;
Proof of Remainder theorem:
Since, we know that dividend$ = $divisor$ \times $quotient$ + $remainder.
From the above statement we considered $p\left( x \right)$ as dividend, $\left( {x - a} \right)$ as divisor, $q\left( x \right)$ as quotient and $r$ as remainder.
Substituting these values above, we get:
$p\left( x \right) = \left( {x - a} \right)q\left( x \right) + r$
Substituting $x = a$:
$
p\left( a \right) = \left( {a - a} \right)q\left( a \right) + r \\
p\left( a \right) = 0.q\left( a \right) + r \\
p\left( a \right) = 0 + r \\
p\left( a \right) = r \\
$
Which states that $p\left( a \right)$, is the remainder for the polynomial $p\left( x \right)$ at $x = a$.
Let’s check by taking a polynomial;
$p\left( x \right) = {x^3} - 4{x^2} - 7x + 10$, which is divided by a linear equation $\left( {x - 2} \right)$.
So, according to the remainder theorem, the remainder can be determined by $p\left( 2 \right)$;
So, substituting $2$ in place of $x$ in $p\left( x \right)$, and we get:
$
p\left( x \right) = {x^3} - 4{x^2} - 7x + 10 \\
p\left( 2 \right) = {2^3} - 4{\left( 2 \right)^2} - 7 \times 2 + 10 \\
$
On, further solving the equation, we get:
$
p\left( 2 \right) = {2^3} - 4{\left( 2 \right)^2} - 7 \times 2 + 10 \\
p\left( 2 \right) = 8 - 16 - 14 + 10 \\
p\left( 2 \right) = 18 - 30 \\
p\left( 2 \right) = - 12 \\
$
which is the remainder for the polynomial $p\left( x \right) = {x^3} - 4{x^2} - 7x + 10$, when divided by $\left( {x - 2} \right)$.
Note: We can also check the remainder is correct or not by using the formula; dividend$ = $divisor$ \times $quotient$ + $remainder. Just substitute the values and solve.
In some case if the remainder is zero, then both the divisor and quotient are the factors of the dividend.
Complete step-by-step answer:
According to the basic definition of Remainder Theorem, if there is a polynomial $p\left( x \right)$ whose variable is $x$, and that polynomial is divided by a linear factor $\left( {x - a} \right)$, where $a$ is some constant. And the result obtained would be some polynomial quotient $q\left( x \right)$ and a remainder $r$. And also, the remainder $r\left( x \right)$ obtained is actually $p\left( x \right)$ at $x = a$ or $p\left( a \right)$;
Proof of Remainder theorem:
Since, we know that dividend$ = $divisor$ \times $quotient$ + $remainder.
From the above statement we considered $p\left( x \right)$ as dividend, $\left( {x - a} \right)$ as divisor, $q\left( x \right)$ as quotient and $r$ as remainder.
Substituting these values above, we get:
$p\left( x \right) = \left( {x - a} \right)q\left( x \right) + r$
Substituting $x = a$:
$
p\left( a \right) = \left( {a - a} \right)q\left( a \right) + r \\
p\left( a \right) = 0.q\left( a \right) + r \\
p\left( a \right) = 0 + r \\
p\left( a \right) = r \\
$
Which states that $p\left( a \right)$, is the remainder for the polynomial $p\left( x \right)$ at $x = a$.
Let’s check by taking a polynomial;
$p\left( x \right) = {x^3} - 4{x^2} - 7x + 10$, which is divided by a linear equation $\left( {x - 2} \right)$.
So, according to the remainder theorem, the remainder can be determined by $p\left( 2 \right)$;
So, substituting $2$ in place of $x$ in $p\left( x \right)$, and we get:
$
p\left( x \right) = {x^3} - 4{x^2} - 7x + 10 \\
p\left( 2 \right) = {2^3} - 4{\left( 2 \right)^2} - 7 \times 2 + 10 \\
$
On, further solving the equation, we get:
$
p\left( 2 \right) = {2^3} - 4{\left( 2 \right)^2} - 7 \times 2 + 10 \\
p\left( 2 \right) = 8 - 16 - 14 + 10 \\
p\left( 2 \right) = 18 - 30 \\
p\left( 2 \right) = - 12 \\
$
which is the remainder for the polynomial $p\left( x \right) = {x^3} - 4{x^2} - 7x + 10$, when divided by $\left( {x - 2} \right)$.
Note: We can also check the remainder is correct or not by using the formula; dividend$ = $divisor$ \times $quotient$ + $remainder. Just substitute the values and solve.
In some case if the remainder is zero, then both the divisor and quotient are the factors of the dividend.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Trending doubts
List some examples of Rabi and Kharif crops class 8 biology CBSE
State the differences between manure and fertilize class 8 biology CBSE
Public administration is concerned with the administration class 8 social science CBSE
What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
What is the tagline of Swachh Bharat Abhiyaan A Sabka class 8 social studies CBSE
State whether true or false Every rhombus is a square class 8 maths CBSE