What's the Physical significance of Lagrangian ?
Answer
Verified
413.1k+ views
Hint: Lagrangian theory is a formalism in classical theory . it's the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is employed to research the motion of a system of discrete particles each with a finite number of degrees of freedom.
Complete answer:
In mechanics, the Lagrangian function is simply the K.E. which is that the energy of motion minus the P.E. i.e. energy of position. The mechanics may be a reformulation of Newtonian mechanics , introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange within the year 1788. Simply put, if you recognize the Lagrangian for a classical system, then you'll compute exactly how the system behaves.
The Lagrangian formulation of Newtonian mechanics essentially turns the study of classical mechanical systems (such as a system of coupled, massive point-particles, pendula, space rockets, etc) into a minimisation problem. The Lagrangian formulation of Newtonian mechanics shouldn't be thought of as more fundamental than the quality formalism. There isn’t anything more physically significant than a few Lagrangian than the dynamics it describes.
Note: For conservative systems, there's a chic formulation of Newtonian mechanics referred to as the Lagrangian formulation. The Lagrangian function, L, for a system is defined to be the difference between the kinetic and potential energies expressed as a function of positions and velocities.
Complete answer:
In mechanics, the Lagrangian function is simply the K.E. which is that the energy of motion minus the P.E. i.e. energy of position. The mechanics may be a reformulation of Newtonian mechanics , introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange within the year 1788. Simply put, if you recognize the Lagrangian for a classical system, then you'll compute exactly how the system behaves.
The Lagrangian formulation of Newtonian mechanics essentially turns the study of classical mechanical systems (such as a system of coupled, massive point-particles, pendula, space rockets, etc) into a minimisation problem. The Lagrangian formulation of Newtonian mechanics shouldn't be thought of as more fundamental than the quality formalism. There isn’t anything more physically significant than a few Lagrangian than the dynamics it describes.
Note: For conservative systems, there's a chic formulation of Newtonian mechanics referred to as the Lagrangian formulation. The Lagrangian function, L, for a system is defined to be the difference between the kinetic and potential energies expressed as a function of positions and velocities.
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE