Answer
Verified
349.5k+ views
Hint: We need to study atomic orbitals and their shapes in regards to subshells. For a better understanding of the geometry of electron orbitals, quantum theory and other characteristics of electron orbitals are used.
Complete answer:
One of three quantum numbers used to characterise an orbital, the main quantum number is one of the three quantum numbers. Unlike a regular orbit, atomic orbitals are broad regions in an atom where electrons are most likely to reside. When an electron is found in three-dimensional space surrounding a nucleus, a quantum mechanical model determines its probability. The angular momentum quantum number, $l$, is another quantum number. It is an integer that takes the values\[l{\text{ }} = {\text{ }}0,{\text{ }}1,{\text{ }}2\],..., \[n{\text{ }}-{\text{ }}1\]and specifies the form of the orbital. This means that an orbital with \[n{\text{ }} = {\text{ }}1\]may only have one $l$ value, \[l{\text{ }} = {\text{ }}0\], but an orbital with \[n{\text{ }} = {\text{ }}2\]can have \[l{\text{ }} = {\text{ }}0\]and\[l{\text{ }} = {\text{ }}1\], and so on. The orbital's overall size and energy are defined by the main quantum number. The orbital's form is determined by the$l$ value. A subshell is formed by orbitals with the same $l$value. Furthermore, the angular momentum of an electron in this orbital is proportional to the angular momentum quantum number.
The $s$ subshells have a sphere-like form. The $s$orbital is present in both the $1n$ and $2n$ main shells, although the sphere in the $2n$ orbital is bigger. Each of the spheres represents a single orbital. Three dumbbell-shaped orbitals make up $p$ subshells. Shell $1$ does not have a $p$ subshell, but principal shell $2n$ does.
Fig: dumbbell-shaped orbitals make up $p$ subshells (x,y and z axis)
Note:
Note that $s$ orbitals are orbitals with\[l{\text{ }} = {\text{ }}0\].The $p$ orbitals are represented by the value \[l{\text{ }} = {\text{ }}1.\]$p$ orbitals form a $p$ subshell for a given $n$ (e.g., \[3p\]for\[n{\text{ }} = {\text{ }}3\]). The \[d\]orbitals are those with\[l{\text{ }} = {\text{ }}2\], followed by the \[f - ,{\text{ }}g - ,\]and \[h - \]orbitals with \[l{\text{ }} = {\text{ }}3,{\text{ }}4,{\text{ }}5,\]and higher values.
Complete answer:
One of three quantum numbers used to characterise an orbital, the main quantum number is one of the three quantum numbers. Unlike a regular orbit, atomic orbitals are broad regions in an atom where electrons are most likely to reside. When an electron is found in three-dimensional space surrounding a nucleus, a quantum mechanical model determines its probability. The angular momentum quantum number, $l$, is another quantum number. It is an integer that takes the values\[l{\text{ }} = {\text{ }}0,{\text{ }}1,{\text{ }}2\],..., \[n{\text{ }}-{\text{ }}1\]and specifies the form of the orbital. This means that an orbital with \[n{\text{ }} = {\text{ }}1\]may only have one $l$ value, \[l{\text{ }} = {\text{ }}0\], but an orbital with \[n{\text{ }} = {\text{ }}2\]can have \[l{\text{ }} = {\text{ }}0\]and\[l{\text{ }} = {\text{ }}1\], and so on. The orbital's overall size and energy are defined by the main quantum number. The orbital's form is determined by the$l$ value. A subshell is formed by orbitals with the same $l$value. Furthermore, the angular momentum of an electron in this orbital is proportional to the angular momentum quantum number.
The $s$ subshells have a sphere-like form. The $s$orbital is present in both the $1n$ and $2n$ main shells, although the sphere in the $2n$ orbital is bigger. Each of the spheres represents a single orbital. Three dumbbell-shaped orbitals make up $p$ subshells. Shell $1$ does not have a $p$ subshell, but principal shell $2n$ does.
Fig: dumbbell-shaped orbitals make up $p$ subshells (x,y and z axis)
Note:
Note that $s$ orbitals are orbitals with\[l{\text{ }} = {\text{ }}0\].The $p$ orbitals are represented by the value \[l{\text{ }} = {\text{ }}1.\]$p$ orbitals form a $p$ subshell for a given $n$ (e.g., \[3p\]for\[n{\text{ }} = {\text{ }}3\]). The \[d\]orbitals are those with\[l{\text{ }} = {\text{ }}2\], followed by the \[f - ,{\text{ }}g - ,\]and \[h - \]orbitals with \[l{\text{ }} = {\text{ }}3,{\text{ }}4,{\text{ }}5,\]and higher values.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE