
Which C-H bond has minimum bond dissociation energy for homolysis
A. IV
B. III
C. II
D. I
Answer
565.8k+ views
Hint: The bond dissociation energy is defined as the amount of energy required to break the chemical bond formed between the two atoms in a chemical compound. The compound which forms a stable intermediate will be strong and high energy will be required to break the bond.
Complete step by step answer:
The covalent bond present between the two atoms is broken by two ways. It can be done either by heterolytic cleavage or by homolytic cleavage.
In homolytic cleavage, the product formed are radicals and the energy required for breaking the covalent bond is known as bond dissociation energy.
The homolytic bond dissociation energy is defined as the amount of energy required to break one mole of gases which are covalently bonded into radical pairs. The SI unit of bond dissociation energy is kJ/mol.
In the given compound, there are four hydrogen atoms bonded to carbon atoms by a covalent bond. But the C-H bond present at first position forms a stable intermediate by resonance formed by the radical due to the presence of methyl group which shows positive inductive effect, the double bond and the hyperconjugation due to five hydrogen atoms present in the ring.
Therefore, the C-H bond at (I) position requires minimum bond-dissociation energy to break the bond.
So, the correct answer is Option A.
Note: On comparing the primary C-H bond, secondary C-H Bond and tertiary C-H bond, the tertiary C-H bond requires less bond dissociation energy.
Complete step by step answer:
The covalent bond present between the two atoms is broken by two ways. It can be done either by heterolytic cleavage or by homolytic cleavage.
In homolytic cleavage, the product formed are radicals and the energy required for breaking the covalent bond is known as bond dissociation energy.
The homolytic bond dissociation energy is defined as the amount of energy required to break one mole of gases which are covalently bonded into radical pairs. The SI unit of bond dissociation energy is kJ/mol.
In the given compound, there are four hydrogen atoms bonded to carbon atoms by a covalent bond. But the C-H bond present at first position forms a stable intermediate by resonance formed by the radical due to the presence of methyl group which shows positive inductive effect, the double bond and the hyperconjugation due to five hydrogen atoms present in the ring.
Therefore, the C-H bond at (I) position requires minimum bond-dissociation energy to break the bond.
So, the correct answer is Option A.
Note: On comparing the primary C-H bond, secondary C-H Bond and tertiary C-H bond, the tertiary C-H bond requires less bond dissociation energy.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

