
Which is larger \[{\left( {1.01} \right)^{1000000}}\]or 10,000? Find the $17^{th}$ and $18^{th}$ terms in the expansion\[{\left( {2 + a} \right)^{50}}\]are equal.
Answer
577.8k+ views
Hint: To solve this question we must have the idea about the Binomial expansion of\[{\left( {1 + x} \right)^n}\]. First we have to express 1.01 as the sum of 1 and 0.01. Then we have to expand \[{\left( {1.01} \right)^{1000000}}\] using the Binomial theorem to evaluate it. Then the obtained must be compared to 10,000 and determine which is larger.
Complete step by step answer:
We know that an algebraic expression containing two terms is called a binomial expression. The Binomial theorem states that
“For any positive integer n, the nth power of the sum of two numbers y and x may be expressed as the sum of \[n+1\] terms of the form which are given by
\[{{\left( y+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{y}^{n-r}}{{x}^{r}}}\]
Or, \[{{\left( y+x \right)}^{n}}={}^{n}{{C}_{0}}{{y}^{n}}+{}^{n}{{C}_{1}}{{y}^{n-1}}x+{}^{n}{{C}_{2}}{{y}^{n-2}}{{x}^{2}}+.............+{}^{n}{{C}_{n-1}}y{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}\]….. (1)
Where,
\[{}^{n}{{C}_{r}}=\dfrac{n!}{(n-r)!r!}\]………………… (2)
Now for the expansion of substituting\[y=1\]in eq. (1) we will get
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{1}^{n}}+{}^{n}{{C}_{1}}{{1}^{n-1}}x+{}^{n}{{C}_{2}}{{1}^{n-2}}{{x}^{2}}+..........+{{x}^{n}}\]
\[{{(1+x)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+...........+{{x}^{n}}\]………………….. (3)
We have to find out\[{{\left( 1.01 \right)}^{1000000}}\]. Let’s express 1.01 as\[\left( 1+0.01 \right)\]. Now considering the expression \[{{\left( 1+0.01 \right)}^{1000000}}\]as \[{{\left( 1+x \right)}^{n}}\]let’s substitute \[x=0.01\]and \[n=1000000\]in the eq. (3) we will get
\[{{\left( 1+0.01 \right)}^{1000000}}=1+1000000\times 0.01+..........\]
Or, \[{{\left( 1+0.01 \right)}^{1000000}}=10,001+.........\]
Here we see that in the expansion 10,001 is added to the positive terms. So the value to be obtained will be greater than 10,000.
Therefore \[{{\left( 1.01 \right)}^{1000000}}\]is larger than 10,000.
Now substituting \[b=2\]and\[n=50\]in eq. (1) we will get the expansion for \[{{\left( 2+a \right)}^{50}}\]which is given by,
\[{{\left( 2+a \right)}^{50}}=\sum\limits_{r=0}^{50}{{}^{50}{{C}_{r}}{{2}^{50-r}}{{a}^{r}}}\]
\[{{\left( 2+a \right)}^{50}}={}^{50}{{C}_{0}}{{2}^{50}}+{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}+.............+{}^{50}{{C}_{50-1}}2{{a}^{50-1}}+{}^{50}{{C}_{50}}{{b}^{50}}\]……………. (4)
From the Binomial theorem we see that the Binomial expansion of \[{{\left( 2+a \right)}^{50}}\]contains \[50+1=51\]terms. From eq. (4), we get that
The $1^{st}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{0}}{{2}^{50}}={}^{50}{{C}_{1-1}}{{2}^{50-(1-1)}}{{a}^{1-1}}\]
The $2^{nd}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}={}^{50}{{C}_{2-1}}{{2}^{50-(2-1)}}{{a}^{2-1}}\]
The $3^{rd}$ term is \[{}^{50}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}={}^{50}{{C}_{3-1}}{{2}^{50-(3-1)}}{{a}^{3-1}}\]
And so on
Similarly \[{{r}^{th}}\] term is given by \[{}^{50}{{C}_{r-1}}{{2}^{50-(r-1)}}{{a}^{r-1}}\]
Now we will find the ${{17}^{th}}\text{ and }{{18}^{th}}$ term in the expansion \[{{\left( 2+a \right)}^{50}}\]which is given by
\[{{T}_{17}}={}^{50}{{C}_{17-1}}{{2}^{50-(17-1)}}{{a}^{17-1}}={}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}\]………………………………… (5)
And \[{{T}_{18}}={}^{50}{{C}_{18-1}}{{2}^{50-(18-1)}}{{a}^{18-1}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}}\] ………………………………. (6)
But given that in the expansion of\[{{\left( 2+a \right)}^{50}}\], the 17th and ${{17}^{th}}\text{ and }{{18}^{th}}$ term are equal, therefore we get
\[\begin{align}
& \Rightarrow {}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}} \\
& \Rightarrow \dfrac{{{a}^{17}}}{{{a}^{16}}}=\dfrac{{}^{50}{{C}_{16}}{{2}^{34}}}{{}^{50}{{C}_{17}}{{2}^{33}}}
\end{align}\]
\[\Rightarrow a=2\times \dfrac{\dfrac{50!}{(50-16)!16!}}{\dfrac{50!}{(50-17)!17!}}\]
\[\Rightarrow a=2\times \dfrac{\left( 33! \right)\left( 17! \right)}{\left( 34! \right)\left( 16! \right)}\]
Or, \[\Rightarrow a=2\times \dfrac{\left( 33! \right)\times 17\times \left( 16! \right)}{34\times \left( 33! \right)\left( 16! \right)}\]
On simplifying, we get
\[\Rightarrow a=2\times \dfrac{17}{34}\]
On solving, we get
\[\Rightarrow a=1\]
Here we got the value of \[a=1\].
Note: Factorial of a number n that is \[n!\] defined only for any nonnegative integer n. The factorial of number n can be expressed as \[n!=n\left( n-1 \right)\left( n-2 \right)\times ........\times 3\times 2\times 1\] or \[n!=n\left( n-1 \right)!\]. Try not to make any calculation mistakes.
Complete step by step answer:
We know that an algebraic expression containing two terms is called a binomial expression. The Binomial theorem states that
“For any positive integer n, the nth power of the sum of two numbers y and x may be expressed as the sum of \[n+1\] terms of the form which are given by
\[{{\left( y+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{y}^{n-r}}{{x}^{r}}}\]
Or, \[{{\left( y+x \right)}^{n}}={}^{n}{{C}_{0}}{{y}^{n}}+{}^{n}{{C}_{1}}{{y}^{n-1}}x+{}^{n}{{C}_{2}}{{y}^{n-2}}{{x}^{2}}+.............+{}^{n}{{C}_{n-1}}y{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}\]….. (1)
Where,
\[{}^{n}{{C}_{r}}=\dfrac{n!}{(n-r)!r!}\]………………… (2)
Now for the expansion of substituting\[y=1\]in eq. (1) we will get
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{1}^{n}}+{}^{n}{{C}_{1}}{{1}^{n-1}}x+{}^{n}{{C}_{2}}{{1}^{n-2}}{{x}^{2}}+..........+{{x}^{n}}\]
\[{{(1+x)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+...........+{{x}^{n}}\]………………….. (3)
We have to find out\[{{\left( 1.01 \right)}^{1000000}}\]. Let’s express 1.01 as\[\left( 1+0.01 \right)\]. Now considering the expression \[{{\left( 1+0.01 \right)}^{1000000}}\]as \[{{\left( 1+x \right)}^{n}}\]let’s substitute \[x=0.01\]and \[n=1000000\]in the eq. (3) we will get
\[{{\left( 1+0.01 \right)}^{1000000}}=1+1000000\times 0.01+..........\]
Or, \[{{\left( 1+0.01 \right)}^{1000000}}=10,001+.........\]
Here we see that in the expansion 10,001 is added to the positive terms. So the value to be obtained will be greater than 10,000.
Therefore \[{{\left( 1.01 \right)}^{1000000}}\]is larger than 10,000.
Now substituting \[b=2\]and\[n=50\]in eq. (1) we will get the expansion for \[{{\left( 2+a \right)}^{50}}\]which is given by,
\[{{\left( 2+a \right)}^{50}}=\sum\limits_{r=0}^{50}{{}^{50}{{C}_{r}}{{2}^{50-r}}{{a}^{r}}}\]
\[{{\left( 2+a \right)}^{50}}={}^{50}{{C}_{0}}{{2}^{50}}+{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}+.............+{}^{50}{{C}_{50-1}}2{{a}^{50-1}}+{}^{50}{{C}_{50}}{{b}^{50}}\]……………. (4)
From the Binomial theorem we see that the Binomial expansion of \[{{\left( 2+a \right)}^{50}}\]contains \[50+1=51\]terms. From eq. (4), we get that
The $1^{st}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{0}}{{2}^{50}}={}^{50}{{C}_{1-1}}{{2}^{50-(1-1)}}{{a}^{1-1}}\]
The $2^{nd}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}={}^{50}{{C}_{2-1}}{{2}^{50-(2-1)}}{{a}^{2-1}}\]
The $3^{rd}$ term is \[{}^{50}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}={}^{50}{{C}_{3-1}}{{2}^{50-(3-1)}}{{a}^{3-1}}\]
And so on
Similarly \[{{r}^{th}}\] term is given by \[{}^{50}{{C}_{r-1}}{{2}^{50-(r-1)}}{{a}^{r-1}}\]
Now we will find the ${{17}^{th}}\text{ and }{{18}^{th}}$ term in the expansion \[{{\left( 2+a \right)}^{50}}\]which is given by
\[{{T}_{17}}={}^{50}{{C}_{17-1}}{{2}^{50-(17-1)}}{{a}^{17-1}}={}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}\]………………………………… (5)
And \[{{T}_{18}}={}^{50}{{C}_{18-1}}{{2}^{50-(18-1)}}{{a}^{18-1}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}}\] ………………………………. (6)
But given that in the expansion of\[{{\left( 2+a \right)}^{50}}\], the 17th and ${{17}^{th}}\text{ and }{{18}^{th}}$ term are equal, therefore we get
\[\begin{align}
& \Rightarrow {}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}} \\
& \Rightarrow \dfrac{{{a}^{17}}}{{{a}^{16}}}=\dfrac{{}^{50}{{C}_{16}}{{2}^{34}}}{{}^{50}{{C}_{17}}{{2}^{33}}}
\end{align}\]
\[\Rightarrow a=2\times \dfrac{\dfrac{50!}{(50-16)!16!}}{\dfrac{50!}{(50-17)!17!}}\]
\[\Rightarrow a=2\times \dfrac{\left( 33! \right)\left( 17! \right)}{\left( 34! \right)\left( 16! \right)}\]
Or, \[\Rightarrow a=2\times \dfrac{\left( 33! \right)\times 17\times \left( 16! \right)}{34\times \left( 33! \right)\left( 16! \right)}\]
On simplifying, we get
\[\Rightarrow a=2\times \dfrac{17}{34}\]
On solving, we get
\[\Rightarrow a=1\]
Here we got the value of \[a=1\].
Note: Factorial of a number n that is \[n!\] defined only for any nonnegative integer n. The factorial of number n can be expressed as \[n!=n\left( n-1 \right)\left( n-2 \right)\times ........\times 3\times 2\times 1\] or \[n!=n\left( n-1 \right)!\]. Try not to make any calculation mistakes.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

