Answer
Verified
452.4k+ views
Hint: To find the greatest among \[{{\left( 30 \right)}^{100}}\] and \[{{\left( 2 \right)}^{567}}\] , let us first consider \[{{\left( 2 \right)}^{5}}=32\] . We know that \[32>\text{ }30\], hence, \[{{\left( 2 \right)}^{5}}>\text{ }30\] . Raising both the sides to the power of 100 gives \[{{\left( {{\left( 2 \right)}^{5}} \right)}^{100}}>\text{ }{{\left( 30 \right)}^{100}}\] . Using the identity ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ , we will get \[{{\left( 2 \right)}^{100\ \ \times \ \ 5}}>\text{ }{{\left( 30 \right)}^{100}}\] . Obviously, \[{{\left( 2 \right)}^{567}}\] is greater than \[{{\left( 2 \right)}^{500}}\] .By comparing this to the previous set, we will get the required answer.
Complete step by step answer:
We need to find the greatest among \[{{\left( 30 \right)}^{100}}\] and \[{{\left( 2 \right)}^{567}}\] .
Since the powers are large numbers, it is good not to go for expanding each. Let us simplify the powers first.
We know that, \[{{\left( 2 \right)}^{5}}=2\times 2\times 2\times 2\times 2\] is equal to \[32\] .
And, we know that \[32>\text{ }30\]
Therefore, \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Now, raising both the sides to the power of 100, we get:-
\[\Rightarrow {{\left( {{\left( 2 \right)}^{5}} \right)}^{100}}>\text{ }{{\left( 30 \right)}^{100}}\]
We know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ .
Hence, the above equality becomes,
\[\Rightarrow {{\left( 2 \right)}^{100\ \ \times \ \ 5}}>\text{ }{{\left( 30 \right)}^{100}}\]
Multiplying, we will get
\[\Rightarrow {{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
Now, let us consider \[{{\left( 2 \right)}^{567}}\] .
We know that \[{{\left( 2 \right)}^{567}}\ \ \text{must}\ \ \text{be}\ \ \text{greater}\ \ \text{than}\ \ {{\left( 2 \right)}^{500}}\]
So, \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Now, as \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Similarly, \[{{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
And, as \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Therefore, \[{{\left( 2 \right)}^{567}}>\text{ }{{\left( 30 \right)}^{100}}\]
Hence, \[{{\left( 2 \right)}^{567}}\] is the greater number.
Note: Students often do mistakes in solving the numbers with exponents. For example, if we have a number \[{{3}^{6}}\] . So, if we are asked to solve this, some students multiply the base by the exponent, i.e. if we are talking about the example, multiply 3 by 6. This is wrong. They need to multiply 3 by 3 six times.
\[\Rightarrow 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ =729\]
Also the properties and rules of exponents must be thorough. In problems with higher exponents, do not expand them. Instead , use the properties to simplify them.
Complete step by step answer:
We need to find the greatest among \[{{\left( 30 \right)}^{100}}\] and \[{{\left( 2 \right)}^{567}}\] .
Since the powers are large numbers, it is good not to go for expanding each. Let us simplify the powers first.
We know that, \[{{\left( 2 \right)}^{5}}=2\times 2\times 2\times 2\times 2\] is equal to \[32\] .
And, we know that \[32>\text{ }30\]
Therefore, \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Now, raising both the sides to the power of 100, we get:-
\[\Rightarrow {{\left( {{\left( 2 \right)}^{5}} \right)}^{100}}>\text{ }{{\left( 30 \right)}^{100}}\]
We know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ .
Hence, the above equality becomes,
\[\Rightarrow {{\left( 2 \right)}^{100\ \ \times \ \ 5}}>\text{ }{{\left( 30 \right)}^{100}}\]
Multiplying, we will get
\[\Rightarrow {{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
Now, let us consider \[{{\left( 2 \right)}^{567}}\] .
We know that \[{{\left( 2 \right)}^{567}}\ \ \text{must}\ \ \text{be}\ \ \text{greater}\ \ \text{than}\ \ {{\left( 2 \right)}^{500}}\]
So, \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Now, as \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Similarly, \[{{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
And, as \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Therefore, \[{{\left( 2 \right)}^{567}}>\text{ }{{\left( 30 \right)}^{100}}\]
Hence, \[{{\left( 2 \right)}^{567}}\] is the greater number.
Note: Students often do mistakes in solving the numbers with exponents. For example, if we have a number \[{{3}^{6}}\] . So, if we are asked to solve this, some students multiply the base by the exponent, i.e. if we are talking about the example, multiply 3 by 6. This is wrong. They need to multiply 3 by 3 six times.
\[\Rightarrow 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ =729\]
Also the properties and rules of exponents must be thorough. In problems with higher exponents, do not expand them. Instead , use the properties to simplify them.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE