Answer
Verified
449.7k+ views
Hint: The secondary alkyl halide reacts equally with the \[{{\text{S}}_{\text{N}}}1{\text{ and }}{{\text{S}}_{\text{N}}}2\] reaction. If the carbocation is stabilised by the resonance then ${{\text{S}}_{\text{N}}}1$ is more preferred.
Complete step by step answer:
The conversion of haloalkanes to alcohol is done by \[{{\text{S}}_{\text{N}}}1{\text{ and }}{{\text{S}}_{\text{N}}}2\] reactions using hydroxide ion as reagent in aqueous medium.
\[{{\text{S}}_{\text{N}}}1\] reaction is also known as nucleophilic substitution unimolecular reaction. It includes two steps. Tertiary carbocations are most stable and hence the tertiary alkyl halides are more reactive towards \[{{\text{S}}_{\text{N}}}1\] reactions followed by secondary and primary carbocation.
\[{{\text{S}}_{\text{N}}}2\] reaction is also known as nucleophilic substitution bimolecular reaction. It is a one step reaction and no intermediate forms in between. Hence, the rate of reaction depends upon the steric hindrance. Since primary alkyl halides are least sterically hindered and hence they are very much reactive towards the \[{{\text{S}}_{\text{N}}}2\] reaction followed by secondary and primary.
The above molecule is a typical tertiary alkyl halide and hence will always go for \[{{\text{S}}_{\text{N}}}1\] reaction because of the formation of stable carbocation.
\[{\text{C}}{{\text{H}}_3} - {\text{CH}}\left( {{\text{Br}}} \right) - {\text{C}}{{\text{H}}_3}\]
This is secondary alkyl halide and hence it will react equally with both the mechanism and have almost the same rate toward both.
\[{\text{C}}{{\text{H}}_2} = {\text{CH}} - {\text{C}}{{\text{H}}_2} - {\text{Br}}\]
\[{{\text{C}}_6}{{\text{H}}_5} - {\text{C}}{{\text{H}}_2} - {\text{Br}}\]
No doubt both of them are primary alkyl halide and should for \[{{\text{S}}_{\text{N}}}2\] reaction mechanism because of low steric hindrance, but the carbocation formed is stabilised by the resonance of phenol group and alkene. So they both will react at considerable rate with \[{{\text{S}}_{\text{N}}}1{\text{ and }}{{\text{S}}_{\text{N}}}2\] mechanism.
Hence, the correct option is A.
Note:
Rate of reaction in case of \[{{\text{S}}_{\text{N}}}1\] depends only on haloalkane, not on nucleophiles. Rate of \[{{\text{S}}_{\text{N}}}2\] reaction depends upon the, nature of the solvent, structure of the substrate, nature of the nucleophile and Effect of leaving-group.
Complete step by step answer:
The conversion of haloalkanes to alcohol is done by \[{{\text{S}}_{\text{N}}}1{\text{ and }}{{\text{S}}_{\text{N}}}2\] reactions using hydroxide ion as reagent in aqueous medium.
\[{{\text{S}}_{\text{N}}}1\] reaction is also known as nucleophilic substitution unimolecular reaction. It includes two steps. Tertiary carbocations are most stable and hence the tertiary alkyl halides are more reactive towards \[{{\text{S}}_{\text{N}}}1\] reactions followed by secondary and primary carbocation.
\[{{\text{S}}_{\text{N}}}2\] reaction is also known as nucleophilic substitution bimolecular reaction. It is a one step reaction and no intermediate forms in between. Hence, the rate of reaction depends upon the steric hindrance. Since primary alkyl halides are least sterically hindered and hence they are very much reactive towards the \[{{\text{S}}_{\text{N}}}2\] reaction followed by secondary and primary.
The above molecule is a typical tertiary alkyl halide and hence will always go for \[{{\text{S}}_{\text{N}}}1\] reaction because of the formation of stable carbocation.
\[{\text{C}}{{\text{H}}_3} - {\text{CH}}\left( {{\text{Br}}} \right) - {\text{C}}{{\text{H}}_3}\]
This is secondary alkyl halide and hence it will react equally with both the mechanism and have almost the same rate toward both.
\[{\text{C}}{{\text{H}}_2} = {\text{CH}} - {\text{C}}{{\text{H}}_2} - {\text{Br}}\]
\[{{\text{C}}_6}{{\text{H}}_5} - {\text{C}}{{\text{H}}_2} - {\text{Br}}\]
No doubt both of them are primary alkyl halide and should for \[{{\text{S}}_{\text{N}}}2\] reaction mechanism because of low steric hindrance, but the carbocation formed is stabilised by the resonance of phenol group and alkene. So they both will react at considerable rate with \[{{\text{S}}_{\text{N}}}1{\text{ and }}{{\text{S}}_{\text{N}}}2\] mechanism.
Hence, the correct option is A.
Note:
Rate of reaction in case of \[{{\text{S}}_{\text{N}}}1\] depends only on haloalkane, not on nucleophiles. Rate of \[{{\text{S}}_{\text{N}}}2\] reaction depends upon the, nature of the solvent, structure of the substrate, nature of the nucleophile and Effect of leaving-group.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE