Answer
Verified
460.2k+ views
Hint: A mole of a substance is the mass of a substance that contains exactly the same number of fundamental units, as in 12.0 g of C. The subscript of atom in the molecular formula indicates the number of moles of atom in one mole of formula.
Step by step answer: Calculate the mass of H atoms in$0.5{\text{ moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ contains 2 moles of ${\text{H}}$ atoms.
So, \[{\text{0}}{\text{.5 moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}{\text{ \times }}\dfrac{{{\text{2 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}}}{\text{ = 1}}{\text{.0 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
${\text{Mass of atom = moles \times atomic mass}}$
The atomic mass of ${\text{H}}$ atom = $1.0{\text{ g/mol}}$
Thus,
\[{\text{Mass of H atoms = 1}}{\text{.0 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 1}}{\text{.0 g}}\]
Hence, $0.5{\text{ moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ contain \[{\text{1}}{\text{.0 g}}\] of ${\text{H}}$ atoms.
Calculate the mass of H atoms in ${\text{1}}{\text{.1 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contains 8 moles of ${\text{H}}$ atoms.
So, \[{\text{1}}{\text{.1 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}{\text{ \times }}\dfrac{{{\text{8 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}}}{\text{ = 8}}{\text{.8 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
\[{\text{Mass of H atoms = 8}}{\text{.8 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 8}}{\text{.8 g}}\]
Hence, ${\text{1}}{\text{.1 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contain \[{\text{8}}{\text{.8 g}}\] of ${\text{H}}$ atoms.
Calculate the mass of H atoms in $1.5{\text{ moles }}{{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}$ contains 8 moles of ${\text{H}}$ atoms.
So, \[{\text{1}}{\text{.5 moles }}{{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}{\text{ \times }}\dfrac{{{\text{8 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}}}{\text{ = 12 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
\[{\text{Mass of H atoms = 12 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 12 g}}\]
Hence, $1.5{\text{ moles }}{{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}$ contain \[{\text{12}}{\text{.0 g}}\] of ${\text{H}}$ atoms.
Calculate the mass of H atoms in ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contains 8 moles of ${\text{H}}$ atoms.
So, \[{\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}{\text{ \times }}\dfrac{{{\text{8 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}}}{\text{ = 32 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
\[{\text{Mass of H atoms = 32 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 32 g}}\]
Hence, ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contain \[{\text{32 g}}\] of ${\text{H}}$ atoms.
Now, by comparing the mass of${\text{H}}$ atoms calculated for each compound we can say that ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contain the largest mass of hydrogen atoms.
Thus, the correct option is (D) ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$
Note: The mass of${\text{H}}$ atom in compounds containing the same number of moles of H atom depends on the moles of compounds. A compound having a greater number of moles will contain a greater number of ${\text{H}}$ atoms and thus greater mass of H atoms.
Step by step answer: Calculate the mass of H atoms in$0.5{\text{ moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ contains 2 moles of ${\text{H}}$ atoms.
So, \[{\text{0}}{\text{.5 moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}{\text{ \times }}\dfrac{{{\text{2 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}}}{\text{ = 1}}{\text{.0 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
${\text{Mass of atom = moles \times atomic mass}}$
The atomic mass of ${\text{H}}$ atom = $1.0{\text{ g/mol}}$
Thus,
\[{\text{Mass of H atoms = 1}}{\text{.0 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 1}}{\text{.0 g}}\]
Hence, $0.5{\text{ moles }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ contain \[{\text{1}}{\text{.0 g}}\] of ${\text{H}}$ atoms.
Calculate the mass of H atoms in ${\text{1}}{\text{.1 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contains 8 moles of ${\text{H}}$ atoms.
So, \[{\text{1}}{\text{.1 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}{\text{ \times }}\dfrac{{{\text{8 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}}}{\text{ = 8}}{\text{.8 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
\[{\text{Mass of H atoms = 8}}{\text{.8 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 8}}{\text{.8 g}}\]
Hence, ${\text{1}}{\text{.1 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contain \[{\text{8}}{\text{.8 g}}\] of ${\text{H}}$ atoms.
Calculate the mass of H atoms in $1.5{\text{ moles }}{{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}$ contains 8 moles of ${\text{H}}$ atoms.
So, \[{\text{1}}{\text{.5 moles }}{{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}{\text{ \times }}\dfrac{{{\text{8 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}}}{\text{ = 12 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
\[{\text{Mass of H atoms = 12 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 12 g}}\]
Hence, $1.5{\text{ moles }}{{\text{C}}_6}{{\text{H}}_8}{{\text{O}}_6}$ contain \[{\text{12}}{\text{.0 g}}\] of ${\text{H}}$ atoms.
Calculate the mass of H atoms in ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$.
The molecular formula of the compound indicates that 1 mole ${{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contains 8 moles of ${\text{H}}$ atoms.
So, \[{\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}{\text{ \times }}\dfrac{{{\text{8 mol H atom }}}}{{1{\text{ moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}}}{\text{ = 32 mol H atoms}}\]
Now, convert these moles of ${\text{H}}$ atom to mass of ${\text{H}}$ atoms as follows:
\[{\text{Mass of H atoms = 32 mol H atoms \times 1}}{\text{.0 g/mol}}\]
\[{\text{Mass of H atoms = 32 g}}\]
Hence, ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contain \[{\text{32 g}}\] of ${\text{H}}$ atoms.
Now, by comparing the mass of${\text{H}}$ atoms calculated for each compound we can say that ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$ contain the largest mass of hydrogen atoms.
Thus, the correct option is (D) ${\text{4}}{\text{.0 moles }}{{\text{C}}_3}{{\text{H}}_8}{{\text{O}}_3}$
Note: The mass of${\text{H}}$ atom in compounds containing the same number of moles of H atom depends on the moles of compounds. A compound having a greater number of moles will contain a greater number of ${\text{H}}$ atoms and thus greater mass of H atoms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE