Answer
Verified
497.4k+ views
Hint: To solve this problem we will use differentiation and differentiate the given equation so that it matches to one of the given options.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE